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ABSTRACT 
 
 
 

This thesis investigates the fundamentals of multiple-input single-output (MISO) 

and multiple-input multiple-output (MIMO) radio communication systems with space-

time codes. A MISO system and MIMO systems were designed using multicarrier delay 

diversity modulation (MDDM). MDDM was incorporated with orthogonal frequency 

division multiplexing (OFDM). The design was implemented with binary phase shift 

keying (BPSK). Matlab was used to simulate the design, which was tested in both an 

additive white Gaussian noise (AWGN) channel and in a slow fading frequency 

nonselective multipath channel with AWGN. The receiver design was incorporated with 

the maximal ratio combiner (MRC) receiving technique with perfect knowledge of 

channel state information (CSI). The theoretical performance was derived for both 

channels and was compared with the simulated results. 
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EXECUTIVE SUMMARY 
 
 
 

In modern military and commercial wireless communications, the demand for 

high speed and reliable communication within the constraints of limited radio frequency 

spectrum and power, are the prime technical criteria for communication systems. To 

obtain a higher data rate at an acceptable bit error rate, larger bandwidth is required. To 

mitigate severe fading channel conditions, a higher transmitted power level is required. 

Multiple-input multiple-output (MIMO) communication systems have the potential to 

provide increased capacity and reliability without increasing the bandwidth or transmitted 

power. MIMO systems exploit time and spatial diversities by employing multiple 

antennas at the transmitter and receiver. MIMO systems may help to enhance the 

robustness of military communication systems under the worst operating conditions.  

Multicarrier communication in the form of orthogonal frequency division 

multiplexing (OFDM) has been adopted in several wireless communications standards 

due to its ability to mitigate severe multipath conditions, its bandwidth efficiency and its 

simplicity of implementation. The combination of OFDM and MIMO technologies holds 

the promise of increasing future communications demands.  

The main objective of this thesis was to investigate the fundamentals of MIMO 

systems with a multicarrier delay diversity modulation (MDDM) technique. A simple 

model was designed to incorporate MDDM in multiple-input single-output (MISO) and 

MIMO systems. This design was simulated and analyzed to demonstrate its performance. 

The system was implemented with binary phase shift keying (BPSK) in Matlab and was 

tested in both an additive white Gaussian noise (AWGN) channel with no fading and a 

slow multipath fading channel with AWGN. The receiver design was based on the 

maximal ratio combining (MRC) technique with the assumption of perfect knowledge of 

channel state information (CSI) at the receiver end. The simulated performance results 

and theoretical analysis results were compared with the conventional single-input single-

output (SISO) system results. The performance metric of bit error probability versus  

 



 xviii

0/bE N  (energy per bit to noise power spectral density ratio) was used. To establish a 

fair comparison, the transmitted power for the SISO, MISO and MIMO systems was 

maintained equal.  

The results showed that the designed MISO and MIMO system performed within 

expected parameters of the theoretical analysis in both the AWGN channel with no 

fading and the multipath fading channel with AWGN. The comparison of performances 

in the AWGN channel with no fading showed that the MISO system performed better 

than the SISO system for low 0/bE N  values up to 6.5  dB and the performance of the 

MISO system was poorer for higher 0/bE N  values. The performances of the MIMO 

systems were better than that of the SISO system for all values of 0/bE N  and all 

systems studies herein. The MIMO systems with two receive antennas and three receive 

antennas outperformed a SISO system by 1.7 dB and 3.4 dB less transmit power required 

respectively for equal performance. For the multipath fading channel with AWGN, the 

MISO and MIMO systems were able to achieve significant advantage over a SISO 

system. 
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I. INTRODUCTION 

A. BACKGROUND 
One of the major challenges facing modern communications is to satisfy the ever 

increasing demand of high speed reliable communications with the constraints of 

extremely limited frequency spectrum and limited power. Wireless communications 

systems like cellular mobile communications, internet and multimedia services require 

very high capacity to fulfill the demand of high data rates. These systems must achieve 

the desired reliability within the limits of power and frequency spectrum availability, 

often in severe channel environments. They need to overcome signal scattering and 

multipath effects, especially in densely populated urban areas. For many military 

commutation systems, reliable communication is to be achieved with low probability of 

detection and interception even in hostile jamming environments.  

The solutions to achieve high capacity with reliability could include time, 

frequency and space diversity. Wireless communication systems with multiple transmit 

and multiple receive antennas can provide high capacity at low probability of bit error 

with extremely low power, even in dense scattering and multipath environments. These 

multiple-input multiple-output (MIMO) systems with appropriate space-time codes have 

been an area of recent research as they hold the promise of ever increasing data rates. The 

capacity of a MIMO system can be increased linearly by increasing the number of 

transmit and receive antennas. The applications of MIMO systems in a frequency 

selective channel require equalization and other techniques to compensate for frequency 

selectivity of the channel, which add to the complexity of these systems. In recent years, 

orthogonal frequency division multiplexing (OFDM) has been widely used in 

communications systems to operate in frequency selective channels including several 

wireless communication standards. Communication systems with a MIMO-OFDM 

combination can significantly improve capacity and reliability by exploiting the 

robustness of OFDM to fading, enhanced by adding more diversity gain via space time 

codes. In this research, delay diversity in combination with a MIMO-OFDM system is 

the primary focus and is referred to as multicarrier delay diversity modulation (MDDM). 

[1, 2] 
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B. OBJECTIVE AND METHODOLOGY 
The main objective of this research was to investigate MIMO-OFDM systems by 

using a cyclic delay diversity technique as a space time code and compare its 

performance to conventional single-input single-output (SISO) systems. The first step to 

achieve the objective was to study the fundamentals of OFDM systems. Then, the OFDM 

technique was applied to a multiple-input single-output (MISO) system and MIMO 

systems with cyclic delay diversity. A MISO system and two MIMO systems, using a 

MDDM scheme with two transmit antennas, were simulated in Matlab with one, two and 

three receive antennas, respectively. Multicarrier delay diversity was implemented with 

binary phase shift keying (BPSK) and was realized in equivalent baseband form to 

facilitate comparison with published theory. The design was simulated both with an 

additive white Gaussian noise (AWGN) channel with no fading and then with a multipath 

faded channel with AWGN. Theoretical performance and simulated system performance 

were compared with reference to the single-input single-output (SISO) system. 

C. RELATED RESEARCH 
MIMO systems promise high efficiency in providing low probability of bit error 

without increasing the transmitted power or the bandwidth [1]. Therefore, research in this 

area has been very active during recent years. The performance of MIMO systems 

applying techniques such as delay diversity, space-time block codes (STBC) and space-

time trellis codes (STTC) has led to the development of several practical systems [1, 2]. 

Numerous studies have been performed to realize and investigate the performance of 

these systems. Space time codes were originally developed for flat fading channels. 

Later, incorporation of OFDM in these systems has provided a solution to 

communications in the frequency selective channel [1]. Delay diversity was the first 

diversity technique introduced for MIMO systems and was described in [3] and [4]. The 

use of delay diversity with OFDM was proposed in [5] for a flat fading channel and a 

cyclic delay diversity approach with OFDM was recommended for the frequency 

selective fading channel in [6] which has been further investigated in [2]. 

D. THESIS ORGANIZATION 
This thesis is organized in five chapters. Chapter II introduces the fundamentals 

of MIMO systems and the multicarrier delay diversity modulation scheme. It discusses 
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the capacity of MIMO systems, space time coding and use of time delay diversity as a 

space time coding technique in MIMO systems. Chapter III describes the modeling and 

simulation of the MDDM transmitter and receiver. Chapter IV analyzes the performance 

of this modulation technique both in an AWGN channel with no fading and in a slow 

fading multipath channel with AWGN. Chapter V reviews the summary of the work done 

with results and includes recommendations for future study. Matlab code is attached as an 

Appendix.  
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II. MIMO SYSTEMS AND MULTICARRIER DELAY DIVERSITY 

The objective of this chapter is to establish the basic understanding of MIMO 

systems, space time coding and the application of MDDM in MIMO systems. An 

overview of the MIMO model is presented. The fundamentals of OFDM and its 

implementations with the discrete Fourier transform (DFT) are discussed. Then, the 

implementation of cyclic delay diversity with OFDM within the context of MIMO 

systems is presented. Finally, the multipath flat fading channel and the maximum ratio 

combining receiver are discussed. 

A. MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) SYSTEMS 
In order to facilitate the understanding of multiple-input multiple-output systems, 

single-input single-output (SISO) systems, single-input multiple-output (SIMO) systems 

and multiple-input single-output (MISO) systems models are discussed briefly. In this 

thesis, all signals and models are represented in complex baseband equivalent form to 

facilitate analysis.  

1. Single-Input Single-Output System  
The SISO system model is shown in Figure 1. The signal transmitted from the 

antenna is denoted as ( )x t . The signal received at the receiving end, ( ),r t  passes through 

the channel with impulse response ( )h t  in an additive white Gaussian noise (AWGN) 

environment. It is assumed that the bandwidth of the signal is small enough such that the 

frequency response of the channel is flat and the channel response can be given as  

      ih h e φ=  (2.1) 

where 1i = − . The relationship between the transmitted signal and receive signal is 

given by 

 

( ) ( )

( )
( )

( ) ( )

( ) ( )

( )

ϕτ δ τ τ

∞

−∞

∞

−∞

= τ − τ τ +

= − +

= +

∫
∫ i

r t x h t d n t

x h e t d n t

x t h n t

 (2.2) 
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where ( )tδ  is the Dirac delta function and ( )n t  is the AWGN. The received signal is the 

transmitted signal convolved with the channel impulse response plus added noise. [7] 

    
 

( )r tTransmitter Receiver

( )h t

( )x t  

 
Figure 1 SISO System (After Ref. [7]) 

 
2. Single-Input Multiple-Output System 
A single-input multiple-output (SIMO) system with one transmit antenna and 

multiple ( )J  receive antennas is illustrated in Figure 2. 

 

( )x t  

1( )r t

1( )h t

( )Jr t

( )Jh tTransmitter Receiver 

1

 
J

 
Figure 2 SIMO System (After Ref. [7]) 

 

The received signals at the receiver end can be represented as the set of linear equations  

 

1 1 1

2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

         

( ) ( ) ( ) ( )J J J

r t h t x t n t

r t h t x t n t

r t h t x t n t

= +

= +

= +

 (2.3) 
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where ( )jr t , ( )jh t  and ( )jn t , 1,2, 3,...,j J=  represent the received signal, channel 

impulse response and noise, respectively, at the -thj  receive antenna. If 

( ),  ( ) and ( )  x t h t r t are sampled at the rate of one sample per symbol, then they can be 

represented as ,  ,  x h r . The received signal can also be represented in form of vectors. 

     1 2 1 2       for     ...⎡ ⎤= = = =⎣ ⎦
TJ Jx x x x x xx  (2.4) 

 1 2⎡ ⎤= ⎣ ⎦
TJh h hh  

 1 2⎡ ⎤= ⎣ ⎦
TJn n nn  (2.5) 

Now, the received vector is represented as  

 r = h.x + n  (2.6) 

where  and x, h n  are transmission, channel and noise vectors, respectively and operator 

' '. denotes element by element multiplication. 

3. Multiple-Input Single-Output System 

A multiple-input single-output (MISO) system with multiple ( )L  transmit 

antennas and one receive antenna is illustrated in Figure 3. The receive antenna receives a 

sum of all the signals transmitted by each antenna and can be represented as  

 1 1 2 2 ... L Lr h x h x h x n= + + + +  (2.7) 

where  and ,  1,2,3,...,l lx h l L=  are the transmitted signal and channel response from 

transmit antenna l  to the receive antenna and n is the AWGN. Equation (2.7) can also be 

written as 

 
1

L
l l

l

r h x n
=

= +∑ . (2.8) 



8 

1x  

( )r t

1h

Lx  

LhTransmitter Receiver 

1 

L

 
Figure 3 MISO System (After Ref. [7]) 

 
4. Multiple-Input Multiple-Output System 

A multiple-input multiple-output (MIMO) system with multiple ( )L  transmit 

antennas and multiple ( )J  receive antennas is illustrated in Figure 4. MIMO systems are 

the focus of this thesis. Therefore, the MIMO model is discussed in detail in this section. 

The representation of the model is largely based on [1, 8]. For a faded channel, it is 

assumed that channel responses from each transmit antenna to each receive antenna are 

independent.  

 

11h
1x  

Lx  

1r

 Jr
LJh

1Lh

1JhTransmitter Receiver 

1

J

1 

t L  

 
Figure 4 MIMO System (After Ref. [7]) 

 

The received signal at any receive antenna is the sum of all the signals transmitted by 

each transmit antenna passing through the respective channel and the AWGN.  
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1 1 2 2

1

21 2 .

= + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= +⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…j j j Lj L j

j j Lj j

L

r h x h x h x n

x
x

h h h n

x

 (2.9) 

ljh  is the channel response from transmit antenna l  to receive antenna j  where 

1,2, 3,...,l L=  and 1,2, 3,...,j J= . The system therefore can be represented in matrix 

form as 

 

1 11 21 1 1 1

2 21 22 2 2 2

1 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

L

L

J J J JL L J

r h h h x n
r h h h x n

r h h h x n

 (2.10) 

 r = Hx + n  (2.11) 

where r  and n  represent the 1J ×  received signal and noise column vectors, H  is a 

J L×  complex channel matrix and x  is the 1L ×  transmitted column matrix. [1] 

All the elements in the channel matrix are considered independent identically 

distributed (IID) complex Gaussian random variables (GRVs), and similarly, the 

elements of the noise vector are also complex Gaussian random variables. According to 

information theory, the optimum distributions for transmitted signals are also Gaussian. 

Therefore, it is considered that all elements of x  are zero mean complex GRVs. 

Therefore, the covariance matrix of the transmitted signals is the same as the 

autocorrelation matrix and it is a diagonal matrix [1, 8] 

 
⎡ ⎤⎣ ⎦

T

xx xx

*
xx

C = R

R = E xx
 (2.12) 

where T*x  denotes the transpose and component-wise complex conjugate of the 

transmitted matrix x . [1] 
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The total transmitted power, P , is the sum of all the diagonal elements of the 

autocorrelation matrix. To facilitate the analysis for the MIMO system, assume that all 

the transmit antennas transmit equal power [8]. 

 ( )2 2

1 1

E E tr
= =

⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∑ ∑

L L
l l

xx
l l

P x x R  (2.13) 

 
2

 El l P
P x

L
⎡ ⎤= =⎣ ⎦  (2.14)  

where lP  is the average power transmitted from antenna l . An AWGN channel is 

considered, and according to information theory, the optimum distribution for the 

transmitted signal is also Gaussian [1]. Therefore, the elements of x  as stated in [1] are 

also considered independent and identically distributed (IID) Gaussian variables with 

zero mean. Then, the autocorrelation matrix can be written as 

 =xx L
P
L

R I  (2.15) 

where LI  is the identity matrix of sizeL L× . 

It is further assumed that the channel matrix is fixed at least for the duration of 

one symbol period and there is no attenuation due to path loss and no amplification due to 

antenna gain. In other words, each receive antenna receives the total transmitted power 

regardless of its branch. Thus, the normalization constraint for the elements of channel 

matrix H  for fixed coefficient can be represented as [1] 

 
2

1
for 1,2,

=

= =∑ …
L

jl

l
h L j J . (2.16) 

For a faded channel, the channel matrix elements are random variables and the 

normalization constraint will apply to the expected value of Equation (2.16). This 

normalization constraint is required for a fair comparison with SISO systems with equal 

power transmitted [8]. It is also assumed that the channel impulse response at that time, 

referred to as the channel state information (CSI), is perfectly known at the receiver by 

sending training symbols. [1]  
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The elements of the noise vector n  are considered IID complex Gaussian random 

variables with zero mean and the variance of 2 /2oσ  for both real and imaginary parts. 

Independence of the noise elements and zero mean imply that the autocorrelation and 

covariance matrix are the same diagonal matrix. Therefore, the covariance matrix nnC  of 

the noise vector can be represented as [1, 8] 

 *E ⎡ ⎤⎣ ⎦= T
nn nn=C R nn  (2.17) 

 2 .σ= o LnnR I  (2.18) 

The average signal power at receive antenna j  with assumed fixed channel coefficients 

can be given by [1, 8] 

 

*

* *

1 1

* *

1 1

 * *

1 1

2 2 

1

E

E

E

E

E

= =

= =

= =

=

⎡ ⎤= ⎣ ⎦
⎡ ⎤

= ⎢ ⎥⎣ ⎦
⎡ ⎤

= ⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

∑ ∑

∑∑

∑∑

∑

j j j
r

L L
l j l mj m

l m

L L
l j l mj m

l m

L L
l j l j j m

l m
L

l j l

l

P r r

h x h x

h x h x

h h x x

h x

 (2.19) 

where *( )  denotes complex conjugate. Substitution of Equations (2.15) and (2.16) into 

Equation (2.19) yields 

 
2 2 

1
E .

=

⎡ ⎤= = =⎢ ⎥⎣ ⎦∑
L

j l j l
r

l

PP h x L P
L

 (2.20) 

Then, the average signal-to-noise ratio (SNR) at each receive antenna, represented by γ , 

is given by [1, 8] 

 2 .γ
σ

=
o

P  (2.21) 

Similarly, the autocorrelation matrix for the received signal can be represented as [8] 
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 *E ⎡ ⎤⎣ ⎦= T
rrR rr . (2.22) 

 

( )( )

( ) ( )( )
( ) ( )

( ) ( )

*

* *

* ** *

* ** *

E

E

      E

E E E E .

⎡ ⎤= + +⎣ ⎦
⎡ ⎤= + +
⎣ ⎦
⎡ ⎤= + + +⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

T
rr

T T

T TT T

T TT T

R Hx n Hx n

Hx n Hx n

Hx Hx Hxn n Hx nn

Hx Hx Hxn Hx n nn

 (2.23) 

By using the identity of transposition of a product of matrices [9] as follows 

 ( )* * *T T T=Hx x H . (2.24) 

Equation (2.23) can be written as 

 * * * * * *E E E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
T T T T T T

rrR Hxx H Hxn x H n nn . (2.25) 

If it is assumed that the channel coefficients are deterministic and signal matrix x  and 

noise matrix n are independent with zero mean, Equation (2.25) yields 

 
* * *

*

E E

     .

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦
= +

T T T
rr

T
xx nn

R H xx H nn

HR  H R
 (2.26) 

B. SPACE TIME CODING 
Space time coding is a technique to achieve higher diversity at the receiver end to 

mitigate multipath fading without increasing the transmitted power or bandwidth. Space 

time coding holds the promise to maximize the system capacity. The system capacity is 

defined in [1], “The maximum possible transmission rate such that the probability of 

error is arbitrarily small.” The capacity of SISO system is given by Shannon’s capacity 

equation [10] 

 
2

2 2

log (1 )

log 1

C W SNR

P
C W

σ

= +

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (2.27) 

where C ,W ,P and 2σ  represent capacity, bandwidth, average signal power and average 

noise power, respectively. The capacity of a MIMO system in a flat fading channel with 

perfect channel state information is given by [1] 
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 2 2log 1 .
σ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

PC W LJ  (2.28) 

Space time coding techniques designed appropriately with MIMO systems have 

the potential to achieve the channel capacity in Equation (2.28). Space time coding 

provides the diversity both in time and space to achieve the higher performance at 

reduced transmitted power and without bandwidth expansion.  Space time coding 

techniques can be classified into two main categories. The first category provides power 

efficiency without compromising the performance such as delay diversity, space-time 

block codes (STBC) and space-time turbo trellis codes (STTC). The other category, such 

as Bell Labs layered space-time technology (BLAST), increases the data rates with the 

use of bandwidth efficient modulation schemes [2].  

The performance of a MIMO system can be further improved by applying 

forward error correction coding (FEC) with optimum interleaving at the cost of reduced 

data rate or increased bandwidth. FEC coding gain can be achieved without sacrificing 

the data rate or bandwidth by designing space time coding technique with higher rate 

modulation schemes. [1]  

This thesis is focused on achieving multicarrier delay diversity gain. The 

incorporation of error control coding and interleaving is left for future work.  

C. MULTICARRIER DELAY DIVERSITY IN MIMO SYSTEMS 
The delay diversity technique was the first approach proposed for MIMO systems 

[2]. In this scheme, delayed versions of the same signal are transmitted by multiple 

antennas. This simple delay diversity was originally suggested for flat fading channels 

[11]. This scheme has the inherent problem of increasing frequency selectivity caused by 

the delay diversity. Full diversity cannot be achieved without equalization [12] and 

equalization for MIMO systems is very difficult due to the large number of channels. 

Thus, the receiver design becomes much more complicated. Orthogonal frequency 

division multiplexing (OFDM) with delay diversity is another approach to make good use 

of frequency selectivity of the delay diversity. The OFDM scheme with delay diversity 

has a limitation as an increase in the number of transmit antennas requires an increase in  
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the guard interval at the expense of bandwidth. If the guard interval is not as large as or 

larger than the delay spread of the channels, then it will cause inter-symbol interference 

(ISI) [12].  

The OFDM scheme can be easily implemented by using the inverse discrete 

Fourier transform (IDFT), which can be efficiently computed by the inverse fast Fourier 

transform (IFFT). The same information can be translated back by the DFT operation. 

DFT and IDFT as defined in [13] are  

 [ ]{ } [ ] [ ] π
−

−

=

= = =∑
1

2 /

0

DFT       for 0,1,2,..., - 1
N

i kn N

n

x m X k x m e k N  (2.29) 

 [ ]{ } [ ] [ ] π
−

=

= = =∑
1

2 /

0

1
IDFT    for 0,1,2,..., - 1

N
i kn N

k

X k x m X k e m N
N

. (2.30) 

Discrete Fourier transforms have a property that any circular shift in the time domain 

results in a phase shift in the frequency domain [13]  

 [ ]{ } [ ]π−− = = −2 /DFT ( )             for 0,1,2,..., 1i kD N
Nx m D e X k k N  (2.31) 

where D denotes the delay in the time index and ( )Nn  denotes n  modulo N . This cyclic 

delay property of the Fourier transforms can be used in an OFDM system design to 

induce diversity that can be exploited at the receiver end.  

To overcome the problems of a simple time delay diversity scheme in a frequency 

selective fading channel for MIMO-OFDM systems, a new approach of cyclic delay 

diversity was suggested in [6]. This simple scheme does not require any additional guard 

interval with an increasing number of transmit antennas. The combination of cyclic delay 

diversity and OFDM in MIMO systems has been referred to as multicarrier delay 

diversity modulation (MDDM) in this thesis and this can be considered a special type of 

space-time coding. For a frequency selective channel, a cyclic guard interval (cyclic 

prefix) of duration G  is added at the beginning of each OFDM symbol. This guard 

interval is greater than or equal to the maximum channel delay M  to mitigate the 

intersymbol interference (ISI). The orthogonality of subcarriers is paramount for OFDM. 

The cyclic prefix converts a linear convolution channel into a circular convolution 

channel and the interference from the previous symbols will only affect the guard 
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interval. This restores the orthogonality at the receiver. Adding zeros as the guard interval 

can alleviate the interference between OFDM symbols.  For a flat fading channel, the 

guard interval can be eliminated to increase the data rate.  [2, 22] 

The space time code for MDDM can be represented as [2] 

 

1 1 0 1 2 1

1 2 1 0 1 2

       ...                         ...    

       ...                       ...   

                     .

                     .

                     .

N G N G N N

N G N G N N N

N

x x x x x x x

x x x x x x x

x

− − + − −

− − − − − −

−

( )

1 2 1 2 3   ...            ...  

cyclic guard interval data block
G L N G N L N L N L N L N L

L N G

x x x x x x− + − + − − + − + − + −

× +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.32) 

where G  is the length of the guard interval and N  is the number of points in the IDFT. 

The MDDM scheme has some advantages over space time block coding (STBC) 

and space time trellis coding (STTC). STBCs require all block codes be orthogonal and 

full rate transmission is not achievable for more than two transmit antennas. The 

complexity of STTC increases exponentially with the number of transmit antennas. 

STBCs and STTCs are fixed for a combination of transmit and receive antennas and they 

do not offer any flexibility in changing the number of antennas at either end. For each 

combination of the number of antennas, a new space-time code is required. These codes 

were designed for flat fading channels. For frequency selective channels, they cannot be 

used without equalization and other compensation techniques. However, the MDDM 

space time code can be used with any combination of transmit and receive antennas with 

little modification in the receiver design. The MDDM is based upon the OFDM 

modulation scheme. Therefore, orthogonal frequency division multiplexing fundamentals 

are discussed very briefly in the following sections. [1, 2] 

D. ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING  
In conventional sequential data transmission over a single carrier, the data rate has 

a limit imposed by the availability of frequency spectrum and the delay spread of the 

channel. The bandwidth required is inversely proportional to the data symbol duration, 

which means that the highest achievable symbol rate is limited by the available 

bandwidth [16]. Considering a fixed delay spread of the channel, the ISI also increases 
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with the increase in the symbol rate as delayed copies of the symbols coming from the 

multipath can have significant overlap with the original symbol. The lessening of ISI will 

require equalization which further adds to the complexity of the system [17]. These 

problems can be mitigated by transmitting the data in parallel on multiple carriers with a 

reduced data rate on each carrier compared to the overall data rate. The reduced data rate 

will require reduced bandwidth which should not be more than the coherence bandwidth 

of the channel to avoid frequency selective fading. This multicarrier system can be 

designed by classical frequency division multiplexing (FDM) [1]. In this scheme, the 

carriers need to be well apart in frequency domain to avoid inter-carrier interference. 

Therefore, a guard frequency band is required between two consecutive subcarriers which 

makes this scheme highly inefficient in frequency spectrum utilization. This problem can 

be eliminated by using minimum-spaced orthogonal carriers. In OFDM, all carriers are 

allowed to overlap by maintaining orthogonality of all the subcarriers, which increases 

bandwidth efficiency [14]. The comparison of bandwidth efficiency for FDM and OFDM 

is illustrated in Figure 5. 

 

 
Figure 5 Frequency Spectrum of (a) FDM vs (b) OFDM (After Ref. [14]) 

 

In OFDM, to maintain the orthogonality of the subcarrier channels, the correlation 

between signals transmitted on subcarriers must be zero. Assume that the available 

bandwidth for the OFDM system is W∆  and it is to be divided in K  subcarriers. The 
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input serial data stream is to be converted into K  parallel data streams which are 

assigned to the K  subcarriers [1]. The symbol duration of the input serial data is '
sT  with 

serial data rate of '
'

1
s

s

f
T

= . Therefore, if the number of parallel data streams is equal to 

the number of OFDM subcarriers, the symbol duration for OFDM will be  

 = '.s sT KT  (2.33) 

Equation (2.33) indicates that the symbol duration of an OFDM signal is K  times larger 

than that of single serial stream symbol duration. Therefore, the OFDM scheme has the 

inherited advantage over single carrier modulation techniques to mitigate ISI and 

frequency selectivity of the channel. The OFDM transmitted signal ( )S t  can be written 

as  
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m m
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∑
 (2.34) 

where A  is a constant, 
mI
d , 

mQ
d are the information-bearing components of the signal 

and 2 2( )
m mm I Qa A d d= + .  

Using the trigonometric identity  

 cos( ) cos( )cos( ) sin( )sin( )α β α β α β+ = −  (2.35) 

( )S t  can be written as  

 
{ }

1

0

1

0

( ) cos(2 )

     cos(2 )cos( ) sin(2 )sin( )

K

m m m
m

K

m m m m m
m

S t a f t

a f t f t

π θ

π θ π θ

−

=

−

=

= +

= −

∑

∑
 (2.36) 
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where 1
m tan m

m

Q

I

d
dθ − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. The correlation between any two symbols transmitted on 

separate subcarriers, represented as ijR , must be equal to zero to maintain the 

orthogonality of subcarriers [1].  

 

0

( ) ( )

   cos(2 ) cos(2 )
s

ij i j

T

i i i j j j

R s t s t dt

a f t t a f t t dtπ θ π θ

+∞

−∞
=

= + +

∫
∫

 (2.37) 

Using the trigonometric identity 

 1 1
cos( )cos( ) cos( ) cos( )

2 2
α β α β α β= + + − . (2.38) 

Equation (2.37) can be written as 

 ( )
0

cos(2 ( ) ( ) ) cos(2 ( ) ( ) )
2

sTi j
ij i j i j i j i j

a a
R f f t t f f t t dtπ θ θ π θ θ= + + + + − + −∫  (2.39) 

where ,  ,    i j i ja a q and q  are constant for the symbol duration.  

For 1
2 ( )i j

s

f f
T

π + , Equation (2.39) can be written as 

 
0

cos(2 ( ) ( ) )
2

sTi j
ij i j i j

a a
R f f t t dtπ θ θ= − + −∫ . (2.40) 

From Equation (2.40), 0ijR =  if  

 
( )  where  set of positive integers

 / .

i j s

i j s

f f T M M

f f M T

− = ∈

⇒ − =
 (2.41) 

Therefore, minimum frequency separation between two consecutive subcarriers to 

maintain orthogonality must be  

 1
 s

s

f f
T

= =  (2.42) 

where sf  is the rate of OFDM symbols. 
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1. Generation of OFDM  
From the earlier discussion of orthogonality in an OFDM signal, all subcarriers 

are orthogonal to one another and the center frequencies of any two subcarriers differ by 

a positive integer multiple of f . In spite of the overlapping of subcarrier frequency 

bands, the transmitted symbol can be recovered at the receiver end without any 

interference due to zero correlation of these subcarriers. In OFDM, serial data symbols 

are converted to parallel to form one OFDM symbol to be assigned to K  subcarriers. 

Now, the bandpass signal can be represented as  

 { }
1

0

( ) cos( ) sin( )
m m

K

I m Q m
m

S t A d w t d w t
−

=

= −∑  (2.43) 

where the subcarrier frequencies 02  and m m mw f f f m fπ= = + . The equation (2.43) 

can be written as  
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where [ ]
m mI Qd m Ad iAd= +  and the complex envelope of the transmitted signal is 

denoted by  

 [ ]
1

2

0

( ) .
K

i m ft

m

D t d m e π
−

=

= ∑
∼

 (2.45) 

Matched filters or correlation demodulators can be used at the receiver end to 

recover the symbol for each subcarrier. Subsequently, for the implementation of this 

scheme, K  modulators and K  matched filters are required. As the number of subcarriers 
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increases, the complexity of the system also increases. For a large number of subcarriers, 

the complexity of the system makes it impractical. [1] 

For making this scheme more practical, consider sampling the complex envelope 

signal D
∼

 at the rate of / sK T , i.e., the sampling interval is /sT K . Now using Equation 

(2.42), Equation (2.45) can be represented as  
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 (2.46) 

Comparison of Equations (2.30) and (2.46) clearly yields that the right side of Equation 

(2.46) is the IDFT of [ ]d m  scaled by K .  

 { }=
∼

IDFT [ ]D K d m  (2.47) 

Equation (2.47) facilitates the implementation of an OFDM system by taking the 

IDFT of the original data stream. Therefore, implementation of the OFDM scheme is 

completely digital. The complexity of the system is decreased as compared to the multi-

oscillator based OFDM modulation technique. Even for large ,K  IDFT/DFT can be 

efficiently implemented by using fast Fourier transforms (FFT) which make computation 

much faster. [1] 

Similarly, the receiver performs the FFT operation on the received signal to 

recover the original parallel data. Employing the FFT in the receiver drastically reduces 

the complexity as compared to employing coherent demodulators. The receiver can 

separate the subcarriers simply by using baseband signal processing techniques. These 

subcarrier signals can be integrated for the duration of the symbol period to produce 

decision variables for the estimation of the transmitted data.  

2. Cyclic Guard Interval 
As previously discussed, the OFDM modulation technique has the advantage of 

reducing the ISI caused by a multipath channel. This is achieved by converting serial data 
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at a high rate into parallel streams each at a lower data rate and increasing the symbol 

transmission duration on orthogonal carriers. In order to eliminate the ISI completely due 

to the time delay spread of the multipath channel, a guard interval is added before each 

OFDM symbol. The length of the guard interval is to be greater than the anticipated delay 

spread of the channel [1]. This guard interval insertion costs both in terms of power and 

data rate or bandwidth. If the length of the guard interval is less than the delay spread of 

the channel, then multiple delayed versions will induce ISI and inter-carrier interference 

by affecting the orthogonality of the subcarriers due to overlapping of different OFDM 

symbols [14]. Taking advantage of the cyclic nature of the DFT represented in Equation 

(2.31), the guard interval can be constructed by some cyclically shifted portion of the 

OFDM symbol.  Therefore, it is referred to as a prefix in the literature. The addition of 

this cyclic guard interval has already been depicted in the space time code (Equation 

(2.32)). Additionally, this cyclic prefix also facilitates the synchronization of the carrier 

frequency and timing to obtain the orthogonality of the subcarriers [12]. The addition of 

the cyclic guard interval is illustrated in Figure 6. 

 
Figure 6 OFDM Symbols  with Guard Intervals 

 
E. THE MULTIPATH AND FADING CHANNEL 

In terrestrial wireless communications, the line of sight (LOS) path for signal 

reception is often not available.  The signal arriving at the receive antenna is comprised 

of many replicas of the signal coming from a number of reflectors and scatters present in 

the medium of transmission. This phenomenon is known as multipath. Even when the 

LOS path signal is present, the multipath components are usually also present. [15, 16] 

In this section, a general view of the multipath channel is presented to understand 

its nature and a baseband equivalent model is derived for use in simulation. The MDDM 

technique will be tested in a multipath faded channel for performance analysis and 

evaluation. 
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In a multipath channel, the signal travels via several different paths before 

arriving at the receive antenna. Due to the different path lengths involved, the amplitude 

and phase of these received replicas are not the same. For example, if a short duration 

pulse is transmitted in a multipath channel, then a train of pulses of different amplitudes, 

phases and arrival times, will be received. As a result, the received signal can 

significantly vary in amplitude and phase and the spectral components of the signal are 

affected differently by the multipath faded channel. Therefore, the frequency response of 

the channel may not be flat over the entire bandwidth of the signal. Multipath 

components of the signal create time-spreading of the signal and cause intersymbol 

interference. [15, 16] 

The channel conditions may not remain constant over time and the media 

composition (e.g., stratosphere, ionosphere) may also change. Furthermore, the number 

and position of the reflectors and scatters cannot be considered fixed. In mobile 

communications, due to the motion of transmitter and receiver, the multipath 

arrangements can never be assumed constant and Doppler shift in signal frequency 

proportional to the relative velocity is also observed. Therefore, the multipath fading 

channel is a time varying channel [15]. Time varying and time spreading aspects of the 

channel cannot be predicted or calculated precisely. For creating a good model of the 

channel, these parameters are measured, and based on these measured statistics, the 

channel can be characterized.  

Doppler spread in the signal frequency describes the time varying nature of the 

channel. The coherence time is inversely proportional to the Doppler shift. The coherence 

time is the statistical measure over which the channel response does not change 

significantly.  To characterize the channel, the coherence time is compared with the 

symbol duration. If the coherence time is less than the symbol durations, then the channel 

is called a fast fading channel. In the case of coherence time greater than the symbol 

duration, it is described as a slow fading channel. [15, 16] 

The multipath delay spread is characterized by the coherence bandwidth. 

Coherence bandwidth has been defined in [17] as, “a statistical measure over which the 

frequency response of the channel is considered flat.”  If the bandwidth of the signal is 
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greater than the coherence bandwidth of the channel, then different frequency 

components will be attenuated differently and the phase variations will also be nonlinear. 

This type of channel is said to be a frequency selective fading channel. If the coherence 

bandwidth of the channel is greater than the signal bandwidth, then all the frequency 

components will face flat fading with almost linear phase changes. This type of channel 

is said to be a frequency nonselective fading channel. [15, 16] 

This fading channel can be modeled statistically as there are a large number of 

variables affecting the channel response. Most of these variables are random in nature 

and several probability distributions can be considered to model these random variables 

[16]. When there are a large number of reflectors and scatters in the physical channel, the 

cumulative effect of this large number of random variables, as per the central limit 

theorem, leads to a Gaussian process model for the channel response. In the case of no 

LOS component present, the process has zero mean with magnitude following the 

Rayleigh probability distribution and the phase is uniformly distributed on [ ]  to π π− . 

[15, 16] 

1. Flat Rayleigh Fading Channel  
A slow fading frequency nonselective channel was simulated to test the 

multicarrier delay diversity modulation scheme.  The channel fading gain was kept fixed 

for the symbol duration to make it a slow fading channel. Considering the no line of sight 

(LOS) path case, a flat fading channel is usually simulated using a Rayleigh distribution 

for the magnitude of the channel response [16]. The Rayleigh distribution is a special 

case of the Ricean distribution with no line of sight component. The probability density 

function for a Rayleigh random variable can be derived from the Ricean probability 

density function as defined in [15] 

 
2 2

02 2 2

( )
( ) exp ( )

2c

c c c
A c c

a a a
f a I u a

α α
σ σ σ

⎛ − + ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (2.48) 

where ( )0 .I  is the modified Bessel function of the first kind of zero order, (.)u  is the 

unit step function and 2α  is the power in the LOS signal component and the average 

received signal power is 
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 2 2 2 2( ) 2cs t a α σ= = +  (2.49) 

 
1      0

( )
0      0. 

c

c
c

a
u a

a

≥⎧⎪= ⎨ <⎪⎩
 (2.50) 

For the Rayleigh distribution case, there is no line of sight component so 0α =  and 

( )0 0 1I = . Using Equation (2.48), the Rayleigh probability density function can be 

represented as  

 
2

2 2( ) exp ( )
2c

c c
A c c

a a
f a u a

σ σ
⎛ − ⎞

= ⎜ ⎟
⎝ ⎠

. (2.51) 

For the baseband simulation of a Rayleigh random variable, two zero mean 

independent real Gaussian random variables were summed as X jY+  [17]. The 

magnitude of this complex random quantity is the desired Rayleigh random variable and 

simulates the magnitude of the channel frequency response. The derivation of the proof 

that the complex sum of two zero mean Gaussian random variables has magnitude with 

Rayleigh distribution and phase uniformly distributed in [ ],  π π−  is largely based on [8].  

Let X and Y be two zero mean independent identically distributed (IID) Gaussian 

random variables and their complex sum is represented by   

 Z X iY= + . (2.52) 

As Z  is to simulate the frequency response of a Rayleigh flat fading channel, it can be 

written as 

 iZ he θ=  (2.53) 

 2 2 2V Z X Y= = + . (2.54) 

Since X and Y are zero mean IID Gaussian random variables (GRVs) 

 0X Y= =  (2.55) 

 2 2 2
X Yσ σ σ= = . (2.56) 
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The random variable V is a sum of two squared zero mean GRVs and is called a central 

chi-squared random variable of degree 2. The probability density function for a central 

chi-squared random variable of degree n  can be given as [16] 

 ( ) ( )2( / 2) 1 / 2

/ 2

1

2
2

σ

σ

− −=
⎛ ⎞Γ⎜ ⎟
⎝ ⎠

n v
V

n n
f v v e u v

n
 (2.57) 

where n  is the number of independent variables and ( ).Γ  is the gamma function. For a 

central chi-squared random variable of degree two ( 2n = ), Equation (2.57) can be 

rewritten as  

 ( ) ( ) ( )2/ 2
2

1 .
2 1

σ

σ
−=

Γ
v

Vf v e u v  (2.58)   

Since  

 ( )1 (1 1)! 1Γ = − = , (2.59) 

[15], the probability density function of V  as per Equation (2.58) can be written as 

 ( ) ( )2/ 2
2

1
2

σ

σ
−= v

Vf v e u v . (2.60) 

The magnitude of the simulated Rayleigh flat faded channel frequency response can be 

written as  

 = =h Z V  (2.61) 

The probability density function for h  can be obtained by transforming the probability 

density function of V  given in Equation (2.58) according to [18] 

 ( )
2

1 ( )
/

=

=H V

v h

f h f v
dh dv

 (2.62) 

where  

 
( )1/ 2

1
2

=
dh
dv v

. (2.63) 
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Substituting Equations (2.60) and (2.63) into Equation (2.62) yields 

 
( ) ( )

( ) ( )

2 2

2 2

2 1/ 2 / 2
2

/ 2
2

12( )
2

.

σ

σ

σ

σ

−

−

=

=

h
H

h
H

f h h e u h

hf h e u h
 (2.64) 

Comparison of Equations (2.51) and (2.64) clearly indicates that the magnitude of the 

complex sum of two zero mean IID GRVs follows the Rayleigh distribution. The mean 

and variance of h  as given in [18] are  

 
2
πσ=h  (2.65) 

 2 2 2 .
2
πσ σ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
h  (2.66) 

Now, the probability distribution function for the phase, θ , of Z  is to be derived. 

The phase θ  can be represented as [8] 

( )

( )

( )

1

1

1

tan if 0 and 0 referred to as case A

tan if 0  and referred to as case B

tan if 0 and 0 referred to as case C

Y X Y
X
Y X Y
X
Y X Y
X

π

θ

π

−

−

−

⎧ ⎛ ⎞ − −∞ < < −∞ < ≤⎜ ⎟⎪ ⎝ ⎠⎪
⎪ ⎛ ⎞= < < ∞ −∞ < < ∞⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞ + −∞ < < ≤ < ∞⎪ ⎜ ⎟

⎝ ⎠⎩

(2.67) 

Let the ratio of zero mean IID GRVs X and Y be defined as [8, 19] 

 =
YR
X

. (2.68) 

The joint probability density function of X and Y can be written as  

 ( ) ( ) ( ) , ( ) ( )XY X Y X Xf x y f x f y f x f y= =  (2.69) 

where  

 ( )
2

22
2

1

2

x

Xf x e σ

πσ

−
= . (2.70) 
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For case A, 0 and 0X Y−∞ < < −∞ < ≤  which implies /2π θ π− ≤ ≤ − . The 

conditional cumulative distribution function of R  can be represented as [8, 19] 

 

( ) { }

( )

( )

A

0 0

|A

0 0

Pr A Pr A

      ,

4 ,

R

XYrx

XYrx

YF r R r r
X

f x y dydx

f x y dydx

−∞

−∞

⎧ ⎫= < = <⎨ ⎬
⎩ ⎭

=

=

∫ ∫
∫ ∫

 (2.71) 

where it is noted that  

 ( ) ( )
|A

4 , if 0 and 0
,

0 otherwise
XY

XY

f x y x y
f x y

⎧ −∞ < < −∞ < <
= ⎨
⎩

 (2.72) 

The conditional probability density function can be obtained by taking the derivative of 

the conditional cumulative distribution function with respect to random variable r  [8, 19] 

 
( )

( )
0 0A

A ( ) 4 ,R
XYR rx

dF r df r f x y dydx
dr dr −∞

⎡ ⎤= = ⎢ ⎥⎣ ⎦∫ ∫ . (2.73) 

From Leibniz’s rule [8, 19] 

 ( ) ( )
0

A 4 ,XYRf r x f x rx dx
−∞

= −∫ . (2.74) 

Substituting Equation (2.69) and (2.70) into Equation (2.74) yields [8, 19] 

 ( ) ( )
2

2
2

1
0 2

A 2

1 2
rx

Rf r e x dxσ

πσ

⎛ ⎞+
− ⎜ ⎟⎜ ⎟

⎝ ⎠

−∞

⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦
∫ . (2.75) 

Equation (2.75) can be represented as 

 ( ) ( )A 2

2 0
1Rf r r

rπ
= ≤ ≤ ∞

+
. (2.76) 

For case A,  

 ( )1tanθ π−= −r , (2.77) 

 2

1
1

θ
=

+
d
dr r

. (2.78) 
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The conditional probability density function of θ  can be attained from Equation (2.76) 

 ( )
θ

θ
θΘ

=

=A A

tan( )

1
 ( )  

/ R

r

f f r
d dr

 (2.79) 

 ( ) ( ) ( )
( )

2
A 2

tan

21
1

r

f r
r

θ

θ
πΘ

=

= +
+

. (2.80) 

Equation (2.80) can be written as  

 ( )|A
2       f θ
πΘ =  (2.81) 

which implies  

 1 -
( )               for -

2 2
f

πθ π θ
πΘ = ≤ ≤ . (2.82) 

Similarly for 0 ,< ≤ ∞ −∞ ≤ ≤ ∞X Y  and for 0, 0−∞ ≤ < −∞ ≤ ≤X Y , it can be 

proven [8] that  

 ( )|
1

Bf θ
πΘ =  (2.83) 

 ( )|C
2f θ
πΘ = . (2.84) 

Therefore, the unconditional probability density function for the phase θ  can be written 

as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

|A |B |C

, , ,
2 2 2 2

Pr A Pr B Pr C
2 1 1 1 2 1=

4 2 4

1 if 
= 2

0 otherwise

f f f f

I I Iπ π π ππ π

θ θ θ θ

θ θ θ
π π π

π θ π
π

Θ Θ Θ Θ

⎛ ⎤ ⎛ ⎤ ⎛ ⎤− − −⎜ ⎜ ⎜⎥ ⎥ ⎥⎝ ⎦ ⎝ ⎦ ⎝ ⎦

= + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎧ − < ≤⎪
⎨
⎪⎩

 (2.85) 

where ( ).I  is the indicator function defined as 
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 ( )
1 if 
0 otherwiseA

x A
I x

∈⎧
≡ ⎨
⎩

 (2.86) 

In this section, it was proved that the complex sum of two zero mean IID GRVs 

gives a complex sum with Rayleigh distributed magnitude and uniformly distributed 

phase in ( ]π π− ,  . Therefore, this model can be used to simulate the frequency response 

of a multipath flat Rayleigh faded channel.  

2. Maximal-Ratio Combining 
As stated in previous sections, many wireless communication systems operate in 

multipath channels and the performance in a multipath channel is often reduced as 

compared to an AWGN channel. Diversity techniques can be employed to mitigate the 

effect of multipath.  Diversity simply implies the transmission or reception of multiple 

copies of the same signal. Diversity can be achieved in time, frequency and space 

domains. It is assumed that all these diversity receptions are independent each with an 

independent channel response.  [15] 

For BPSK, the transmitted baseband symbols are defined as  

 
( )
( )

0
0

1

for 0

for 0
c

i
c

x t Ae A t T

x t Ae A t Tπ−

= = ≤ ≤

= = − ≤ ≤
 (2.87) 

where cT  is the symbol duration in each time diversity and A  is the peak amplitude of 

the BPSK signal. The energy for each time diversity reception, E , can be given as [16] 

 2 2

0
( )    for 0,1= = =∫

cT

k cE x t dt A T k . (2.88) 

For time diversity, it is assumed that each received diversity signal passes through 

an independent faded channel and can be represented as  

 ( ) ( ) ( )                  for   0 , 0,1 θ= + ≤ ≤ =li
l l k l cr t h e x t n t t T k  (2.89) 

where l  represents the number of the diversity reception and ( )ln t  is the complex valued 

AWGN with the circularly symmetric probability density function. The power spectral 

density function for ( )ln t  is 

 ( )nn oS f N=  (2.90) 
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where the power spectral density functions for the real and imaginary components of 

( )ln t  are  

 ( ) ( ) 0
Re[ ]Re[ ] Im[ ]Im[ ] .

2
= =n n n n

NS f S f  (2.91) 

For all the diversity receptions, the received signal can be written as  

 
1

( ) ( ) ( )l

L
i

l k l
l

r t he x t n tθ−

=

⎡ ⎤= +⎣ ⎦∑ . (2.92) 

The random variable ,l kY  after the correlation receiver can be represented as [8]  

 
, 0

2

, 2

( ( ) ( ))

           for     0

for     1,

c
l

l

l

T i
l k l k l

i
c l l

l k i
c l l

Y A h e x t n t dt

A T h e N k
Y

A T h e N k

θ

θ

θ

−

−

−

= +

⎧ + =⎪= ⎨
− + =⎪⎩

∫
 (2.93) 

where lN  is a zero-mean complex Gaussian random variable with circularly symmetric 

probability density function which represents the noise component and can be given as  

 ( )
0

.= ∫
cT

l lN A n t dt  (2.94) 

Since the integrator is a filter with frequency response int( )H f  and impulse response  

 
b

int

1    if 0 t<T
( )

0    otherwise.
h t

≤⎧⎪= ⎨
⎪⎩

 (2.95) 

Then, the variance of lN  can be calculated using Paresval’s Theorem and Equations 

(2.90) and (2.95)  

 

{ } ( ) ( )

( )

22 2 2
int

2 2
int 0

2
0 0

E

      

      

σ
+∞

−∞

+∞

−∞

≡ =

=

= =

∫

∫

lN l nn

b

N A H f S f df

A h t N df

A N T EN

. (2.96) 

Substituting Equation (2.88) into Equation (2.93) yields  
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 ,

for     0

for     1.

θ

θ

−

−

⎧ + =⎪= ⎨
− + =⎪⎩

l

l

i
l l

l k i
l l

Eh e N k
Y

Eh e N k
 (2.97) 

It is assumed that the exact channel state information (CSI) is known at the 

receiver end. The complex conjugate of the CSI is multiplied by the random variables ,l kY  

to produce the random variables ,l kZ . Thus, the phase shift in the channel is compensated 

and the value of the mean of the random variables ,l kZ  is proportional to the signal 

power. Therefore, a strong received signal carries a larger weight than a weak received 

signal. All the diversity receptions are added to form the random variable kZ . This 

optimum combiner is called the maximal ratio combiner (MRC) [16]. Figure 7 illustrates 

the MRC for BPSK with time diversity. 

 
Figure 7 MRC for BPSK with Time Diversity (After Ref. [8, 15])  

 

After maximal ratio combining, the random variable kZ  can be written as  

 

2

1

2

1

for     0

for     1.

θ

θ

=

=

⎧ ⎡ ⎤+ =⎪ ⎣ ⎦⎪= ⎨
⎪ ⎡ ⎤− + =⎣ ⎦⎪⎩

∑

∑

l

l

L
i

l l l
l

k L
i

l l l
l

Eh h e N k
Z

Eh h e N k
 (2.98) 

The real part of ,kZ  denoted by { }ζ = Re ,k kZ  is fed to the comparator for comparison 

with the predefined threshold level. For BPSK, if 0,kζ >  the receiver decides 0k =  was 

( )+x n tk l  

 

−  

 

0
( )dt
cT

∫  

A  

,l kZ,l k
Y

1

L

l=
∑

lj
lhe

φ  

Combiner

+  [ ]Re kZ  
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transmitted. If 0,kζ <  the receiver decides 1k =  was transmitted. The decision variable 

kζ  can be written as  

 [ ]
( )

( )

2

1

2

1

Re     for     0
Re

Re     for     1.

θ

θ

ζ =

=

⎧ ⎡ ⎤+ =⎪ ⎣ ⎦⎪= = ⎨
⎪ ⎡ ⎤− + =⎣ ⎦⎪⎩

∑

∑

l

l

L
i

l l l
l

k k L
i

l l l
l

Eh h e N k
Z

Eh h e N k
 (2.99) 

From Equation (2.99), it is evident that the decision variable kζ  is a Gaussian random 

variable with conditional mean (conditioned on the value of 
=
∑ 2

1

L

l
l

h )  

 2

1

( 1) .
L

k
k l

l

E hζ
=

= − ∑  (2.100) 

Since the lN ’s are independent zero-mean complex Gaussian random variables with 

circularly symmetric probability density function and variance equal to 0EN , the 

conditional variance of kζ  can be expressed as:  

 

( ){ }

( ){ }

{ }

0 1

2 2 2

1

2

1

2

1

20

1

Var Re

Var Re

1 Var
2

2

ζ ζ ζ

ϕ

σ σ σ

=

=

=

=

= =

=

=

=

=

∑

∑

∑

∑

l

L
i

l l
l
L

l l
l

L

l l
l

L

l
l

h e N

h N

h N

EN h

. (2.101) 

Assuming the probability of transmitting a “1” bit and a “0” bit are equal and using the 

fact that the conditional probabilities of bit error |b kP  are equal due to the symmetry of the 

noise probability density function and the zero threshold, it is possible to calculate the 

conditional probability of bit error as:  
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{ }|0 |1 |0 0

0 0 0

0 0 0

0

2

10

1 1 Pr 0
2 2

Pr

Pr

2 .

ζ ζ

ζ ζ

ζ

ζ

ζ ζ ζ
σ σ

ζ ζ ζ
σ σ

ζ
σ

=

= + = = <

⎧ ⎫−⎪ ⎪= < −⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫−⎪ ⎪= >⎨ ⎬
⎪ ⎪⎩ ⎭
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

b b b b

L

l
l

P P P P

Q

EQ h
N

 (2.102) 

Where ( )Q x is defined as [18]  

 ( )
2

21
2π

∞ −
= ∫

u

x
Q x e du . (2.103)  

Let γ  be defined as   

 2

10

γ
=

= ∑
L

l
l

E h
N

. (2.104) 

Substituting Equation (2.103) into (2.102), it is possible to rewrite the conditional 

probability of bit error as a probability of bit error conditioned on γ :  

 ( )( ) 2 .γ γ=bP Q  (2.105) 

The average probability of bit error can be obtained by taking the expectation of ( )γbP  

with respect to random variable γ  [15, 16]. The average probability of bit error can be 

written as  

 
( )

( ) ( )

E γ

γ γ γ
∞

Γ−∞

= ⎡ ⎤⎣ ⎦

= ∫
b b

b

P P

P f d
 (2.106) 

where ( )f γΓ  is the probability density function for γ .  Similarly, γ l  can be written as  
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2

0

.γ = l
l

Eh
N

 (2.107) 

The probability distribution function of 2
lh  was derived in the last section. Taking 2

l lh v= , 

Equation (2.60) can be represented as  

 ( ) ( )2/ 2
2

1 .
2

σ

σ
−= l

l

v
V l lf v e u v  (2.108) 

The average SNR per diversity reception can be written as  

 
[ ]

[ ]

2

0

2

0 0

=E =E

   = E = E

γ γ
⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤⎣ ⎦

l
l l

l l

Eh
N

E Eh v
N N

. (2.109) 

The expectation can be evaluated as 

 
[ ]

2

0

/ 2 2
2

0

E ( )

1         = 2 .
2

l

l

l l V l l

v
l l

v v f v dv

v e dvσ σ
σ

∞

∞
−

=

=

∫

∫
 (2.110) 

Now the Equation (2.109) can be written as  

 
2

0

2 σγ =l
E
N

. (2.111) 

The characteristic function of lV  can be written as [8, 16]  

 ( ) ( )2

1
1 2

ω
σ ω

=
−lVF

i
. (2.112) 

If L  IID random variables are added, then the probability density function of the sum is 

the L -fold convolution of the probability density function of the single random variable.  

Therefore, the characteristic function of the sum is the characteristic function of the 

single random variable raised to the power of L  [16, 18].  Therefore, the characteristic 

function for 
1

L

l
l

V V
=

= ∑  is  
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 ( )
( )2

1 .
1 2

ω
σ ω

=
−

V LF
i

 (2.113) 

The probability density function of V  is the inverse Fourier transform of the 

characteristic function and can be written as [8]  

 ( ) 2
1

/ 2
2 ( )

2 ( 1)!

L
v

V L L

vf v e u v
L

σ

σ

−
−=

−
. (2.114) 

Consistent with Equation (2.104), it is possible to write 

 
0

γ = Ev
N

   (2.115) 

and  

 γ
= 

o

d E
dv N

.  (2.116) 

Now, the probability distribution function for γ  can be given as 

 

( ) ( )

( )
( )

2

2

1
/ 2

2

0

21

2

0

1
2 1 !

2 1 !

o

o

L
v

L L

v E
N

EL
N

L

vf eE L
N

f e
E L

N

σ

γ

γ
σ

γ
σ

γγ
σ

−
−

Γ

=

−
−

Γ

=
−

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

. (2.117) 

Substituting Equation (2.111) into Equation (2.117) yields 

 ( )
( ) ( )

( )
1

1 !

γ
γγγ γ

γ

− −

Γ =
−

l

L

Lf e u
L

. (2.118) 

Now, substituting Equation (2.105) and (2.118) into Equation (2.106), the average 

probability of bit error can be represented as [8]  
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 ( ) ( ) ( )

1

0
2

1 !

γ
γγγ γ

γ

− −∞
=

−∫ l

L

b L
l

P Q e d
L

. (2.119) 

The solution for Equation (2.119) has been given in [16] as 

 ( ) ( )1

0

11 1
2 2

−

=

− +− +⎡ ⎤ ⎡ ⎤⎛ ⎞
= ⎢ ⎥ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦ ⎣ ⎦
∑

L lL

b
l

L lu u
P

l
 (2.120) 

where u  is defined as  

 
1
γ
γ

=
+

u . (2.121) 

In time diversity, the total bit energy received is proportional to the number of diversity 

receptions and is represented as  

 bE LE=  (2.122) 

where L  is the number of diversity reception and E  is the energy per diversity reception. 

Substituting Equation (2.122) into Equation (2.109), γ l  can be written as  

 
22 σγ = b

l
o

E
LN

. (2.123) 

Similarly, in the case of space diversity of order J  as illustrated in Figure 8, each 

diversity reception is processed by a separate correlator. The integrating time period in 

each correlator is bT .  Therefore, the bit energy per diversity reception can be represented 

as  

 bE E=  (2.124) 

Now, the average SNR per diversity reception γ l  can be written as  

 
2

0

2 σγ = b
l

E
N

. (2.125) 
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Figure 8 MRC for BPSK for Space Diversity (After Ref. [8, 15]) 

 

In this thesis, the performance of MDDM in MISO and MIMO systems is 

compared with the SISO system. In the case of the SISO system, there is no diversity and 

1L = .  Thus, the probability of bit error bP  as per Equation (2.120) is given as [15, 16] 

 1 .
2
−⎡ ⎤= ⎢ ⎥⎣ ⎦

b
uP  (2.126) 

Substituting Equation (2.121) into Equation (2.126) yields  

 1 1 .
2 1

γ
γ

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

l
b

l

P  (2.127) 

The probability of bit error for a BPSK MISO system in a multipath fading channel as 

given in Equation (2.127) will be compared with the simulated and theoretical probability 

of bit error for MDDM MISO and MIMO systems. 

F. SUMMARY 
In this chapter, the fundamentals of SISO, SIMO and MISO systems were 

introduced to facilitate better understanding of MIMO systems. To approach the 

maximum capacity of MIMO channels, space time codes can be designed in conjunction 

with the modulation techniques to incorporate diversity. Orthogonal frequency division 

( )+x n tk l  

lj
lhe

φ   

−  

 

0
( )dt
sT

∫

A  

j
kZ

j
kY

1

J

j=
∑

Combiner

+  [ ]Re kZ

1j =

j J=

.

.

.
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multiplexing (OFDM) can be used to mitigate the frequency selectivity of the channel. 

OFDM utilizes the discrete Fourier transform (DFT) of the baseband signal. The 

multicarrier cyclic delay diversity technique can be implemented by exploiting the cyclic 

shift property of the DFT. A baseband model for the flat Rayleigh fading channel was 

derived for simulation. Lastly, the MRC as an optimum diversity combining technique 

was discussed. The next chapter discusses the design of the simulated MDDM 

transmitters and receivers. 
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III. MULTICARRIER DELAY DIVERSITY MODULATION 
TRANSMITTER AND RECEIVER MODELS 

This chapter introduces the implementation of the multicarrier delay diversity 

modulation scheme at the block level. The basic design of the transmitter and receiver is 

discussed briefly. In this thesis, the MDDM scheme is implemented using BPSK 

modulation. The inclusion of forward error correction (FEC) and higher bandwidth 

efficient modulation schemes can be considered for future work. The next chapter 

illustrates the simulation and analysis of the MDDM transmitter and receiver.  

A. THE MULTICARRIER DELAY DIVERSITY MODULATION SCHEME 
The scheme of implementing delay diversity with OFDM for MIMO systems was 

recommended for flat fading channels in [5]. The cyclic delay diversity approach with 

OFDM was suggested for the frequency selective fading channel in [6]. In this research, 

cyclic delay diversity with OFDM is investigated. The implementation of multicarrier 

delay diversity in MIMO systems has been discussed in the previous chapter. For 

modeling purposes, the MIMO configuration of two transmit and two receive antennas is 

discussed in this chapter. For simulation and analysis, the number of receive antennas 

varies from one to three. To facilitate better understanding and precise representation of 

signals from the transmit antenna to the receive antenna, the following notations will be 

used:   

• kX  represents the BPSK symbol at k -th interval before the multicarrier 
delay diversity modulation and after demodulation  

• l
kX  represents the BPSK symbol at k -th interval from the transmitting 

antenna l  after multicarrier delay diversity delay modulation 

• l
mx  represents the signal x  to be transmitted from transmit antenna l  in 

the -thm  transmission interval,  

• j
mr  represents the received signal at receive antenna j  at the -thm  time 

interval,  

• ljh  represents the channel response from transmit antenna l  to receive 
antenna j ,  

• jn  represents the AWGN at receive antenna j , and 

• asterisk ( )∗  represents the complex conjugate. 
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B. MDDM TRANSMITTER 
The multicarrier delay diversity scheme will be simulated with binary phase shift 

keying modulation. A block diagram of the MDDM transmitter with two transmitting 

antennas is shown in Figure 9. The function of each block is explained briefly in the 

following discussion.    

 Binary   
 Information  
 Source 

 BPSK  
 Modulator 

 OFDM  
 Modulator 

Cyclic  
 Delay 

  Add Guard  D/A  
 Converter 

D/A  
 Converter 

 RF  
 Modulator 

  Add Guard  RF  
 Modulator 

  Tx. Antenna 2 

  Tx. Antenna 1 

 
Figure 9 Block Diagram of MDDM Transmitter (After Ref. [2]) 

 
1. Binary Information Source and M PSK Modulator 
The binary information source generates bits 0 and 1 with equal probabilities  

 Pr[0] Pr[1] 1/2= = . (3.1) 

Then, the bits are mapped to I  and Q  symbol coordinates by the M PSK modulator. 

The equivalent lowpass (i.e. complex envelope) M PSK symbols can be represented as  

 π −= =
∼

2 ( 1)/( ) ( )       for 1,2,...,j m M
k TX t Ae P t m M  (3.2) 

where A  is the amplitude of the signal, M  is the number of possible phases (for BPSK 

2M = , for QPSK 4M = ), T  is the symbol duration, and ( )TP t  denotes  

 
≤ ≤⎧⎪= ⎨

⎪⎩

1         for 0
( )

0         otherwiseT

t T
P t . (3.3) 

2. OFDM Modulator 
Mapped symbols are fed to the OFDM modulator block. In this block, first the 

serial input data stream is converted to parallel. Then, the IFFT operation is performed to 
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realize OFDM as discussed in the last chapter. The FFT size denotes the number of 

subcarriers. Figure 10 illustrates the OFDM modulator. [2] 

 
Figure 10 Orthogonal Frequency Division Multiplexing Modulator 

 

In this thesis, the number of subcarriers is 256 to simulate OFDM, in accordance 

with the IEEE 802.16a standard. In this standard, three types of subcarriers are defined: 

data carriers for information symbol transmission, pilot carriers for the estimation of CSI 

and guard carriers (null carriers) placed on both sides of the frequency spectrum to avoid 

intercarrier interference from neighboring frequency bands. The assignment of the 

subcarriers in this thesis has been adopted from the IEEE 802.16a standard and given in 

Table 1. Figure 11 illustrates the subcarriers organization at the input of the IFFT block. 

 

Size of FFT 256 

# of information subcarriers 192 

# of pilot subcarriers 8 

# of null subcarriers (including the DC 
subcarrier)   56 

# of lower frequency guard subcarriers 28 

# of higher frequency guard subcarriers 27 

Frequency indices of null subcarriers 
(including the DC subcarrier) 

128, 127, , 101,0
101, 102, , 127 

− − −
+ + +

…
…

 

Frequency indices of pilot subcarriers 1,2,...,8  
 
Table 1 Assignment of OFDM Subcarriers (After IEEE 802.16a standard, Ref. [20])  

 

 Serial to 
 Parallel  
 Converter 

 Serial Data In     IFFT 

.

.

.

 0X  

 1NX −  

.

.

.

0x  

1Nx −

Parallel to 
 Serial 
 Converter 

Serial Data Out 
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+127

+101

-101

- 128

IFFT0

-100

-60

-36

-1

+9

+36

+60

+100

192 information 
symbols

27 null subcarriers

28 null subcarriers

8 pilot subcarriers

DC subcarrier

 
 

Figure 11 Assignment of Subcarriers at the Input of IFFT Block (After Ref. [20]) 

 

The output of the IFFT block can be represented according to the definition of Equation 

(2.30) as 

 π
−

=

= =∑
1

2 /

0

1
        for m 0,1,2,...,255

N
j km N

m k
k

x X e
N

 (3.4) 

where 256,N =  and the index of the subcarrier is represented from 0  to 255  instead of 

128−  to 128  for convenience. After the IFFT operation, the OFDM sequence is 

converted from parallel to serial. [23] 

3. Cyclic Delay Addition 

After the IFFT operation, the symbols nx  are cyclically shifted to realize a cyclic 

delay of one information symbol period. For transmitting antenna 1 , there is no delay and 

0.D =  For each subsequent antenna, the cyclic delay is increased one information 

symbol period. The signal after cyclic delay is given as  

 −= = = −( )            where 1,2,...,    and   1
N

l
n n Dx x l L D l  (3.5) 

4. Guard Interval (Cyclic Prefix) Addition   
As discussed in the previous chapter, a guard interval at the beginning of each 

OFDM symbol is added to mitigate the effect of the multipath channel. The length of the 
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guard interval ,GT  in the form of a cyclic prefix, is chosen to be greater than or equal to 

the anticipated delay spread of the channel. The addition of a guard interval is an 

overhead at the cost of data rate. The guard length is specified with respect to the OFDM 

symbol period sT  and is also referred to as guard ratio /G sT T . The addition of the guard 

interval has been illustrated in Figure 6. For example, in the IEEE 802.16 wireless 

standard, of the guard ratios is chosen to be 1/32 . The FFT block size is 256. Therefore, 

the guard length is to be 8. The cyclic prefix constitutes the last eight samples of the IFFT 

output and it is concatenated to the beginning of the OFDM symbol sequence.  Now, the 

sequence with added guard interval for each transmitting antenna can be represented as  

 
+

+

=

=

1
( )

2
( )

[ [248] [249] ... [255]  [0]   [1] [2]... [255]]

[ [247] [248] ... [254] [255] [0] [1] ... [254]].

n G

n G

x x x x x x x x

x x x x x x x x
 (3.6) 

5. Digital to Analog Conversion and RF Modulation 
The IFFT operation, the cyclic delay operation and the guard interval operations 

are performed in the discrete time domain. For transmission purposes, these discrete 

symbols are converted to an analog signal using a digital to analog (D/A) converter. After 

digital to analog conversion, these symbols are continuous time baseband OFDM 

symbols. Then, these symbols are upconverted to the transmission radio frequency. After 

requisite amplification to the desired power level, these symbols are transmitted from the 

respective antennas. In this thesis, the simulation is performed at the discrete time 

baseband level and no digital to analog or RF modulation is implemented. 

C. MDDM RECEIVER 
The multicarrier delay diversity scheme can be employed with any number of 

receive antenna without changing the transmitted space time code. In this section, the 

receiver design for two receive antennas is discussed. It is assumed that the signals 

received at both receiving antennas are independent of each other due to independent 

channel responses and no antenna correlation. The MDDM receiver has almost the same 

structure as the MDDM transmitter but the operations are performed in reverse order. The 

MDDM receiver design is illustrated in Figure 12. At the receiving antenna, the 

cyclically time delayed OFDM symbols are received after passing through the channel 

with the AWGN and can be represented as  
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( )
( )

+ +

+ +

+

+

= ∗ + ∗ + = +

= ∗ + ∗ + = +

( ) ( )

( ) ( )

1 11 1 21 2 1
( )

2 12 1 22 2 2
( )

      for 0,1,2,..., - 1

      for 0,1,2,..., - 1

n G n G

n G n G

n G

n G

r A h x h x n n N G

r A h x h x n n N G
 (3.7) 

where ∗  represents circular convolution (due to the circular guard interval).  [2] 

After RF demodulation and analog to digital (A/D) conversion, the OFDM 

symbol received by each receiving antenna is in the discrete time domain. The guard 

interval added at the transmitter is removed. Then, this signal is fed to the OFDM 

demodulator as a baseband signal. In the OFDM demodulator block, the received OFDM 

symbol is converted from serial to parallel for the FFT operation. The OFDM 

demodulator is illustrated in Figure 13. After the FFT operation as defined in Equation 

(2.29), the signal can be represented as  

 { } π

= =

= = ∗ + =∑ ∑
2 /255

255 2

0 1

FFT ( ( ) )     for 0,1,2,...,255
j knj j lj l j

k n
n l

R r h x n e n . (3.8) 

 Estimated 
 Info    MRC 

 Remove Guard  A/D  
 Converter 

 A/D  
 Converter 

RF  
De-
modulator 

 Rx. Antenna 2 

OFDM  
De-
modulator 

OFDM  
De-  
modulator 

 Remove Guard 

RF  
De-
modulator 

 Rx. Antenna 1 

 

Figure 12 Block Diagram of MDDM Receiver 
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Figure 13 Orthogonal Frequency Division Multiplexing Demodulator  

 

Using the linearity property of the discrete Fourier transform, Equation (3.8) can be 

represented as  

 
= + + =

= + + =

1 11 1 21 2 1

2 12 1 22 2 2

      for 0,1,2,...,255

      for 0,1,2,...,255

k k k k

k k k k

R H X H X N k

R H X H X N k
 (3.9) 

where ljH  is the frequency response of the channel from transmit antenna l  to receive 

antenna j  and jN  is the AWGN at receive antenna j  in the frequency domain. Using 

the circular time shift property of the discrete Fourier transform as defined in Equation 

(2.31), Equation (3.9) can be written as  

 

π

π

π

π

−

−

−

−

= + + =

= + + =

= + + =

= + +

1 11 1 21 1 2 / 1

2 12 1 22 1 2 / 2

1 11 21 2 / 1 1

2 12 22 2 / 1 2

      for 0,1,2,...,255

      for 0,1,2,...,255

( )           for 0,1,2,...,255

( )        

i kD N
k k k

i kD N
k k k

i kD N
k k

i kD N
k k

R H X H X e N k

R H X H X e N k

R H H e X N k

R H H e X N =  for 0,1,2,...,25k

 (3.10) 

where 1D =  is the cyclic time delay induced at transmit antenna two. Now, the effective 

channel response at the receive antenna j  is defined as  

 1 2 2 /j j j i k N
k k kH H H e π−= + . (3.11) 

Substituting Equation (3.11) into Equation (3.10), the signal at each receiving antenna 

can be written as  

 Serial to 
 Parallel  
 Converter 

 Serial Data In      FFT .

.

.

 0r  

 1Nr −  

.

.

.

 0R  

 
1NR −

Parallel to 
 Serial 
 Converter 

Serial Data Out 
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= +

= +

1 1 1 1

2 2 1 2

k k k k

k k k k

R H X N

R H X N
. (3.12) 

Equation (3.12) shows clearly the space diversity receptions at the receiving end. 

They are combined by using the optimum maximal ratio combining receiver. MRC for 

space diversity has already been discussed in the previous chapter and illustrated in 

Figure 8. It is assumed that perfect CSI is known at the receiver end. In MRC, the 

received signal is multiplied with the complex conjugate of CSI and all diversity 

receptions are added to form the decision variable. The outputs of the integrators of the 

MRC for each diversity reception can be represented as  

 

= +

= +

= +

= +

1 1 1'

2 2 2 '

1
1 1'

2
2 2 '

k b k k k

k b k k k

b k k
k k

b k k
k k

Y ATH X N

Y ATH X N

E H X
Y N

A
E H X

Y N
A

 (3.13) 

where bE  is the average energy per bit, =1' 1
k b kN ATN , and =2 ' 2

k b kN ATN . 

After the integrator stage, the random variable is multiplied by the complex 

conjugate of CSI and the resulting random variable can be represented as  

 

∗
∗

∗
∗

∗

∗

= +

= +

= +

= +

1 1
1 1 1'

2 2
2 2 2 '

21
1 1 1'

22
2 2 2 '

( )
( )

( )
( )

( )

( )

b k k k
k k k

b k k k
k k k

b k k
k k k

b k k
k k k

E H H X
Z H N

A
E H H X

Z H N
A

E H X
Z H N

A

E H X
Z H N

A

. (3.14) 

The decision variable kZ  at the output of combiner stage can be expressed as  

 ( ) ∗ ∗

= +

= + + +

1 2

2 21 2 1 '1 2 '2( ) ( )

k k k

k
k b k k k k

Z Z Z

X
Z E H H H N H N

A

. (3.15) 
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For the final decision of the estimated received data, the decision variable is 

compared with predetermined threshold levels. For the case of BPSK, the real part of kZ  

is compared with a threshold level of zero to decide each received binary bit. [2, 15] 

D. SUMMARY 
This chapter discussed the designs of the MDDM transmitter and receiver at the 

block level. The function of each block was discussed with the representation of signals 

before and after each block operation. During the discussion, two assumptions were 

made, i.e., perfect knowledge of CSI at the receiver and constant channel response for the 

duration of the OFDM symbol. The next chapter analyzes the MDDM transmitter and 

receiver model for the AWGN channel with and without flat fading.  
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IV. ANALYSIS AND SIMULATION OF MULTICARRIER DELAY 
DIVERSITY MODULATION SCHEME 

In this chapter, the performance (bit error probability) analysis and simulation of 

MISO and MIMO systems with multicarrier delay diversity is presented. The MDDM 

transmitter and receiver as described in Chapter III were simulated in Matlab. The system 

is analyzed with an AWGN channel with and without Rayleigh fading.  The analytical 

and simulated results are compared with a SISO BPSK system. To establish a fair 

comparison of the SISO system and the MIMO system with MDDM, the power 

transmitted for both systems is assumed equal. To facilitate better understanding and 

precise representation of signals from transmit to receive antenna, this thesis will adhere 

to the following notation:  

• bE  represents the average energy per bit at the receiver of  the SISO 
system, 

• 
'

sE  represents the average energy per MIMO BPSK symbol per receiving 
antenna,  

• sT  represents the OFDM symbol duration, 

• '
sT  represents the MIMO BPSK symbol duration and '

s bT T=   

• ζ k  represents the real part of decision variable kZ . 

Energy per bit is an important parameter for comparison and is defined as  

 
2

2

0

bT

b k bE X dt AT= =∫  (4.1) 

where  k  is the time index of the BPSK symbol (before serial to parallel and after 

parallel to serial conversions) and kX  is the BPSK modulated symbol as defined in Table 

2. 

Input bit at time  k Output Symbol kX  

0 A  

1 A−  

Table 2 BPSK Modulation Scheme (After Ref. [8]) 
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For simulation and analysis, the amplitude 1A =  is maintained. Equation (4.1) 

shows that the energy per bit for BPSK modulation is the same for bit 0  and bit 1 . Thus 

the transmitted power for the SISO system can be written as  

 2b
SISO

b

E
P A

T
= =  (4.2) 

The probability of bit error bP  for a baseband equivalent SISO BPSK system in 

discrete domain for correlation demodulator can be represented as [15, 16]  

 b
Z

Z
P Q

σ

−
+⎛ ⎞

⎜ ⎟=
⎜ ⎟
⎝ ⎠

. (4.3) 

In this case Z
−
+ is represented as  

 Z A
−
+ =  (4.4) 

and  

 2 0

2Z
b

N
T

σ =  (4.5) 

where 0

2
N  represents the two sided noise power spectral density for the real part of the 

AWGN. Substituting Equation (4.4) and Equation (4.5) into Equation (4.3) yields,  

 2 2b b
b

o o

T A E
P Q Q

N N

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (4.6) 

The bit error probability of the SISO system as given by Equation (4.6) will serve as a 

benchmark for comparison of the MISO and MIMO systems with MDDM in the AWGN 

channel.  

In this thesis the number of transmit antennas is two and both the transmit 

antennas transmit equal power. The total energy per bit transmitted for MISO and MIMO 

systems using BPSK symbols can be defined as  

 ' ' '
s sE PT=  (4.7) 
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and  

 SISO MISO MIMOP P P= = . (4.8) 

Therefore, the energy transmitted per antenna 'P  can be given as  

 '

2
SISO SISOP P

P
L

= = . (4.9) 

Now, Equation (4.7) is rewritten as  

 

'
' ' '

'

2

.
2

SISO s
s s

b
s

P T
E PT

E
E

= =

=
 (4.10) 

A. SIMULATION OF MDDM TRANSMITTER 
The block diagram of the MDDM transmitter model is shown in Figure 9. The 

MDDM transmitter was simulated in MATLAB with equivalent baseband BPSK in the 

discrete time domain. The simulation was implemented with one sample for each BPSK 

symbol. The MDDM transmitter scheme, as mentioned in Chapter III with two 

transmitting antennas, was simulated without added guard interval, D/A converter and RF 

modulator blocks to facilitate the simulations. Equal power was transmitted from both the 

antennas. To achieve the same total power transmission as that of a single antenna BPSK 

transmitter, the signal at each branch of MIMO transmitter was multiplied with a gain 

factor of g  for normalization. The transmitted energy per symbol for BPSK is same 

whether a binary 1  or 0  is transmitted. With the gain factor g  the energy per symbol is 

represented as  

 
' 2

' 2 2 '

0

sT

s k sE gX dt g AT= =∫ . (4.11) 

Substituting Equation (4.10) into Equation (4.11) yields  

 
'

2 2 '

2
SISO s

s

P T
g AT= . (4.12) 

Using Equation (4.2), Equation (4.12) can be rewritten as  
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2 1
2
1

.
2

g

g

=

=
 (4.13) 

The gain factor 1/ 2g =  is maintained for all subsequent simulations to transmit the 

same power as that of a single antenna BPSK system. Thus the effective amplitude of the 

BPSK modulated signal for each antenna is given as  

 = =
1

2 2k

A
X . (4.14) 

B. SIMULATION OF MDDM RECIVER 
The block diagram of the MDDM receiver model is shown in Figure 12. The 

MDDM receiver was also simulated in MATLAB with equivalent baseband BPSK in the 

discrete time domain.  The MDDM receiver simulation was implemented as discussed in 

Chapter III except for the RF demodulator, the A/D converter and the Remove Guard 

blocks. The receiver was configured as a MISO system with only one receive antenna 

and as a MIMO system with two receive antennas and as a MIMO system with three 

receive antennas. After multicarrier delay diversity demodulation, the space diversity 

receptions of MIMO systems were combined by using the optimum MRC technique as 

discussed in Chapter II. After the BPSK correlation demodulator as illustrated in Figure 

14, ζ k  (the real part of the random variable kZ ) was compared with the threshold level 

according to Table 3. For analysis and simulation purposes it is assumed that the 

transmitter and receiver frequencies are synchronized and, in the case of MIMO systems, 

all the diversity receptions are also synchronized.  
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−  
0

1
( )dt
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T ∫  
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l =
∑
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j
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Figure 14 BPSK Correlation Demodulator for MIMO System with MDDM 

 

 Output Binary Bit

0kζ ≥ 0 

0kζ < 1 

Table 3 Demodulation of BPSK Signal (After Ref. [8]). 

 
C. SIMULATION AND PERFORMANCE ANALYSIS OF MDDM IN AWGN 

The performance of MDDM was first simulated and analyzed in AWGN only. In 

this simulation and analysis no fading is assumed. This means that each channel response 

coefficient ljh  equals one. A block diagram of the MIMO system in AWGN with three 

receiving antennas is illustrated in Figure 15. Both the MDDM transmitter and receiver 

are collapsed into one block each to facilitate presentation. In this simulation two gain 

blocks each with normalizing gain factor of g  are shown at the outputs of the transmitter 

for each transmitting antenna. The AWGN channel blocks add white Gaussian noise to 

the signal at respective receiving antennas. The noise power is increased progressively 

with each simulation run to calculate the bit error rate at different signal to noise ratios. 

Bit error rate is calculated by comparing the input binary data stream at the input to the 

transmitter kb  and output binary data stream at the output of the receiver 
^

kb .  
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Figure 15 Simulation of MDDM MIMO System in AWGN  

 
1. Performance Analysis of MISO System with Two Transmit and One 

Receive Antenna 

At the receiving antenna, the received signal mr  at time m  is given by  

 1 2
m m m mr x x n= + + . (4.15) 

where 2
mx  is a cyclically delayed signal and is given by Equation (3.5)   

 2 1
( 1) .

Nm mx x −=  (4.16) 

After the FFT operation, the received signal is written as  

 = + +1 2FFT[ ] FFT[ ].m m m mr x x n  (4.17) 

Using the linearity property of the discrete Fourier transform [13], Equation (4.17) can be 
represented as  

 = + +1 2
k k k kR X X N . (4.18) 

Substituting Equation (2.31) and (4.16) into Equation (4.18) yields  

 
π

π

−

−

= + +

= + +

1 1 2 /

2 / 1(1 )

j k N
k k k k

j k N
k k k

R X X e N

R e X N
 (4.19) 
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where N  is the FFT size or the number of subcarriers, kN  is AWGN in the frequency 

domain and 2 /(1 )j k Ne π−+  is the effective channel response for MDDM in AWGN 

channel. To facilitate the presentation, the phase angle kφ  is defined as  

 2 / .k k Nφ π=  (4.20) 

Multiplying Equation (4.19) by the complex conjugate of the effective channel response, 

the result is given by 

 φ φ φ− + += + + + +1(1 )(1 ) (1 )k k kj j j
k k kZ e e X e N . (4.21) 

Using Euler’s identity  

 cos( ) sin( )je jθ θ θ= +  (4.22) 

Equation (4.21) is rewritten as  

 φφ += + + +1(2 2 cos( )) (1 )kjk k k kZ X e N . (4.23) 

Equation (4.23) defines a complex Gaussian random variable kZ  due to AWGN. 

For demodulation of BPSK data , { }ζ = Rek kZ  is compared with the threshold as given 

in Table 3. If correlation demodulator conditions are assumed then  

{ } ( ) ( )

[ ]

[ ]

φφ

φ

φ

+⎧ ⎫⎪ ⎪⎡ ⎤= + + +⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

= +

= +

∫
0

1
E | " 0" was transmitted E 2 2cos 1

2

                                      2 2 cos( )
2

                                      2 1 cos( ) .

b

k

T
j

k k k
b

k

k

A
Z N e dt

T

A

A

(4.24) 

Since this expected value is real, it follows that 

 { }{ } [ ]E Re | "0" was sent 2 1 cos( )k k kZ Aζ φ
+
= = +  (4.25) 

 

The variance of { }ζ = Rek kZ  is only due to the variance of real part of the noise 

component φ++(1 )kj ke N  [15, 16] and is represented by ζσ
2  
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222
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where { }E represents the expected value. Re (1 )kjk ke Nφη +⎡ ⎤= +⎣ ⎦  is the real part of a 

complex Gaussian random variable with zero mean. kη  and 2
kη  can be written as 
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2
1

Re (1 ) (1 ) (1 )
2

1
                        (1 ) (1 ) 2(1 )(1 )

4

                 

k k k

k k k

k k k k

j j j
k k k k

j j j
k k k k

j j j j
k k k k

e N e N e N

e N e N e N

e N e N e e N N

( )φ φ φ+ − ∗ ∗= + + + + +2 2 2 21
       (1 ) (1 ) 4(1 cos( )) .

4
k kj j

k k k k ke N e N N N

(4.27) 

where ( )∗  represents the complex conjugate. Substituting Equation (4.27) into Equation 

(4.26) gives  

 
( ) ( )( ){ }
( ){ } ( ){ } { }( )

φ φ
ζ

φ φ

σ φ

φ

+ − ∗ ∗

+ − ∗ ∗

= + + + + +

= + + + + +

222 2 2

222 2

1
E (1 ) (1 ) 4(1 cos( ))

4
1

    (1 ) E (1 ) E 4(1 cos( ))E .
4

k k

k k

j j
k k k k k

j j
k k k k k

e N e N N N

e N e N N N
(4.28) 

As discussed earlier, kN  is a complex Gaussian random variable with zero mean, 

therefore  

 ( ){ } ( ){ }∗= =22
E E 0k kN N . (4.29) 

Substituting Equation (4.29) into Equation (4.28) gives  

 [ ] { }ζσ φ ∗= +2 1 cos( ) E .k k kN N  (4.30) 

Using Equation (2.29), kN  is given as  

 
1

2 /

0

.
N

j km N
k m

m

N n e π
−

−

=

= ∑  (4.31) 

Substituting Equation (4.31) into Equation (4.30) yields  
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[ ]

[ ] { }

[ ] { }

π π
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π π
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∑∑

1 1
2 2 / 2 /

0 0
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1 1
2 ( )/

0 0

1 cos( ) E     

    1 cos( ) E

    1 cos( ) E .

N N
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k m l
m l

N N
j kl N j km N

k l m
l m

N N
j k l m N

k l m
l m

n e n e

n n e e

n n e

 (4.32) 

Samples of AWGN at different time instants are IID Gaussian random variables with 

zero mean. Therefore, they are uncorrelated and the variance can be represented as 

 

{ }
{ } { }
{ }

σ

∗

∗
⎧ ≠⎪= ⎨

=⎪⎩
≠⎧⎪= ⎨ =⎪⎩

2

2

E E     if 
E     

E          if 

0                   if 
            

                if .
m

m p

m p

m

n

n n m p
n n

n m p

m p

m p

 (4.33) 

Substituting Equation (4.33) into Equation (4.32) gives  

 
[ ] { }

[ ]

ζσ φ

φ σ

−
∗

=

= +

= +

∑
1

2

0

2

1 cos( ) E

    1 cos( )
m

N

k m m
m

k n

n n

N
 (4.34) 

where 2

mn
σ  is the noise power of the OFDM symbol in the time domain before the FFT 

operation. If correlation demodulator conditions are assumed, the noise power for OFDM 

symbol durations is given by  

 
2

2 ( )
2m

o
n

N
H f dfσ

∞

−∞

= ∫  (4.35) 

where /2oN  (Watts per Hertz) is the power spectral density of the real part of noise and 

( )H f  is the frequency response of the integrator [15, 16]. Using Parsevel’s theorem [19], 

Equation (4.35) converts to  
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σ =

=

=

∫

∫

22
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[ ]
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1
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    .
2

s

m

s

T
o

n

T
o

s

o

s

N
h t dt

N
dt

T

N
T

 (4.36) 

Substituting Equation (4.36) into Equation (4.34) gives  

 [ ]
ζ

φ
σ

+
=2 1 cos( )

.
2
k o

s

NN

T
 (4.37) 

Substituting, sT  from Equation (2.33) and since for BPSK '
s bT T= , Equation (4.37)  

yields  

 [ ] [ ]
ζ

φ φ
σ

+ +
= =2 1 cos( ) 1 cos( )

.
2 2

k o k o

b b

NN N

NT T
 (4.38) 

Using Equations (4.24) and (4.38), the bit error probability '
bP  conditioned on the value 

kφ  can be expressed as  

 

{ }

[ ]

[ ] [ ]

ξ ξ

ξ ξ

ξ

ζ

ζ ζ ζ
σ σ

ζ ζ ζ
σ σ

ζ φ
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φ φ

+ +

+ +

+

= <

⎧ ⎫−⎪ ⎪= < −⎨ ⎬
⎪ ⎪⎩ ⎭
⎧ ⎫−⎪ ⎪= >⎨ ⎬
⎪ ⎪⎩ ⎭

⎛ ⎞⎛ ⎞ +⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛+ +⎜ ⎟ ⎜= =
⎜ ⎟ ⎝⎝ ⎠

' Pr 0 | " 0 "  was sent

   Pr | " 0 "

   Pr | " 0 "

2 (1 cos( ))
   

1 cos( ) /2

2 1 cos( ) 1 cos( )
   2

k k

k k

k

b k

k k k

k k k

k k

k o b

b k b k

o o

P

A
Q Q

N T

A T E
Q Q

N N

⎞
⎟

⎜ ⎟
⎠
.

 (4.39) 

The number of data symbols per OFDM frame is 192 as discussed in Chapter III. 

The indices of these data symbols are given as 9,10,...,100,156,157,...,255k = . Thus, 

the average bit error probability bP  is given by 
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 [ ] [ ]φ φ

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟⎜ ⎟ ⎜ ⎟= +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑
100 255

9 156

4 1 cos( ) 4 1 cos( )1
.

192
k b k b

b
k ko o

E E
P Q Q

N N
 (4.40) 

The simulation was conducted with increasing /b oE N  for 100,000 OFDM 

frames or 19.2 million data symbols per /b oE N  value.  

The simulated bit error rate (BER) for the MISO system is plotted in Figure 16 

where 2L =  is the number of transmit antennas and 1J =  is the number of receive 

antennas. The theoretical probability of bit error as obtained in Equation (4.40) is also 

plotted. For comparison of performances, this figure also includes the theoretical 

probability of bit error for a baseband equivalent SISO system. The simulated results 

follow the theoretical results very closely.  The MISO system with MDDM performs 

better than the SISO system for lower /b oE N  values and the performance of the MISO 

system is poorer than that of SISO system for /b oE N  greater than 6.5 dB. 

 
Figure 16 Results of MDDM MISO System in AWGN  
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2. Performance Analysis of MIMO System with Two Transmit and Two 
Receive Antennas 

For the MDDM MIMO system with two receive antennas, it is assumed that the 

signal receptions at both the antennas are uncorrelated and signals are received at the 

same time without any relative delay. The received signals at both receive antennas are 

given by  

 
1 1 2 1

2 1 2 2 .

m m m m

m m m m

r x x n

r x x n

= + +

= + +
 (4.41) 

After the FFT operation the signals can be represented as  

 
1 1 2 1

2 1 2 2.

k k k k

k k k k

R X X N

R X X N

= + +

= + +
 (4.42) 

Substituting Equation (2.31) and (4.19) into Equation (4.42) gives  

 

1 1 1 2 / 1
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(1 )
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k

k
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k k k k
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j
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R e X N
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π

π

φ

φ

−

−

−

−
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= + +
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= + +

 (4.43) 

Following the derivation of Equation (4.23), Equation (4.43) converts to  

 
[ ]
[ ]

φ φ

φ φ

φ
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 (4.44) 

Now both space diversity receptions are combined to form random variable kZ  which is 

given by  
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φ φ
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φ
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 (4.45) 

If correlation demodulator conditions are assumed, then  
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{ }
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1
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                                      2 2 (1 cos( )).
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b

k

Z Z dt
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A φ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

= +

∫
 (4.46) 

The variance of { }ζ = Rek kZ  is only due to the variance of real part of noise 

components [15, 16]. Noise components at both receive antennas are IID Gaussian 

random variables. Therefore the total variance of the sum of two noise components is the 

sum of their individual variances [18]. The total noise variance is given as  

 ζ ζ ζσ σ σ= +1 2
2 2 2

k k k
 (4.47) 

where { }ζ =1 1Rek kZ  and { }ζ =2 2Re .k kZ  Following the derivation of noise variance 

derived in Equation (4.37), Equation (4.47) is represented as  
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+
=
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T
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and ζσ k
 is given as  

 ζ
φσ +

=
(1 cos( ))

.
k

k o

b

N
T

 (4.49) 

Following the derivation of Equation (4.39), the bit error probability '
bP  conditioned on 

the value kφ  is given by  
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 (4.50) 
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Following the derivation of Equation (4.40) the average probability of bit error bP  for a 

MDDM MIMO system with two transmit and two receiving antennas is given by  

 
100 255

9 156

1 8(1 cos( )) 8(1 cos( ))
.

192
k b k b

b
k ko o

E E
P Q Q

N N
φ φ

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞+ +
= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  (4.51) 

The simulation was conducted for the same number of OFDM frames or data 

symbols as mentioned in the previous section. The simulated bit error rate (BER) for the 

MIMO system is plotted in Figure 17. The simulated results follow theoretical results 

very closely.   

 
Figure 17 Results of MDDM MIMO System in AWGN 

 
3. Performance Analysis of MIMO System with Two Transmit and 

Three Receive Antennas 
Similarly, in this section, the performance analysis of MDDM MIMO system with 

two transmit and three receive antennas is discussed. Exploiting the symmetry of the 

receiver design, the derivation of results is mainly based on the results presented in the 

1.7 dB 
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last two sections. It is also assumed that the signal receptions at all antennas are 

uncorrelated and signals are received at the same time without any relative delay. The 

received signals at the three receive antennas are given by  

 

1 1 2 1

2 1 2 2

3 1 2 3 .

m m m m

m m m m

m m m m

r x x n

r x x n

r x x n

= + +

= + +

= + +

 (4.52) 

After the FFT operation the signals are represented as   

 

1 1 2 1

2 1 2 2

3 1 2 3.

k k k k

k k k k

k k k k

R X X N

R X X N
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 (4.53) 

Based on the discussion in previous sections, the components of the variables from all the 

space diversity receptions are 
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 (4.54) 

Now all the space diversity receptions are combined to form random variable kZ  which 

is given by  

 
[ ] φ φ φφ

= + +

= + + + + + + +

1 2 3

1 1 2 3   6 1 cos( ) (1 ) (1 ) (1 ) .k k k
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If correlation demodulator conditions are assumed, then  

{ } ( ) ( )

[ ]

φφ

φ
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k
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j
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b

k

Z A N e dt
T

A

(4.56) 

The variance of { }ζ = Rek kZ  is only due to the variance of real part of noise 

components [15, 16]. Noise components at all the receive antennas are IID Gaussian 
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random variables. Therefore the total variance of the sum of three noise components is 

the sum of their individual variances [18]. The total noise variance is given as  

 ζ ζ ζ ζσ σ σ σ= + +1 2 3
2 2 2 2

k k k k
 (4.57) 

where { }ζ =1 1Rek kZ , { }ζ =2 2Rek kZ  and { }ζ =2 2Rek kZ . Following the derivation of 
noise variance derived in Equation (4.37), Equation  (4.57) is represented as  

 [ ]
ζ

φ
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+
=2 3 1 cos( )

2k

k o

b

N

T
 (4.58) 

and ζσ k
 is  
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T
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Following the derivation of Equation (4.39),  the bit error probability '
bP  conditioned on 

the value kφ  is given by  
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 (4.60) 

The average probability of bit error bP  for this case can be obtained by 

 [ ] [ ]φ φ

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟⎜ ⎟ ⎜ ⎟= +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑
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12 1 cos( ) 12 1 cos( )1
.
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k b k b

b
k ko o

E E
P Q Q

N N
 (4.61) 

The simulation was conducted for the same number of OFDM frames or data 

symbols as mentioned in the previous section. The simulated bit error rate (BER) for the 

MIMO system is plotted in Figure 18. The simulated results follow theoretical results 

very closely.  
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A comparison of Equations (4.40), (4.51) and (4.61) clearly reveals that the 

improvement factor increases linearly with increasing number of receiving antenna. Thus, 

the average probability of bit error in AWGN channel for MDDM scheme discussed in 

this thesis with J  receiving antenna can be represented in general form as  

 
100 255

9 156

1 4 (1 cos( )) 4 (1 cos( ))
.

192
k b k b

b
k ko o

J E J E
P Q Q

N N
φ φ

= =
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= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  (4.62) 

 
 

 
Figure 18 Results of MDDM MIMO System in AWGN 

 
D. SIMULATION AND PERFORMANCE ANALYSIS OF MDDM IN A 

MULTIPATH FADING CHANNEL 
Next, the MDDM scheme was simulated and analyzed with the effect of a slow 

fading frequency nonselective channel. The multipath model for the slow Rayleigh fading 

channel was discussed in Chapter II. A multipath fading channel is inserted in Figure 15 

from each transmit antenna to each receive antenna. A block diagram of the MIMO 

3.4 dB 
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system with slow fading frequency nonselective channel plus AWGN is illustrated in 

Figure 19. It is assumed that the each channel frequency response remains constant for an 

OFDM symbol duration. Therefore the channel is slow fading. The simulated channel 

response is the complex sum of two IID Gaussian random sources. The block model of 

channel response is illustrated in Figure 20. In simulation, each channel response is 

multiplied with the transmitted signal from the respective antenna and input to the 

AWGN block of respective receive antenna. 
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Figure 19 Simulation of MDDM MIMO System in Multipath  

 
Figure 20 Simulation of Channel Response 
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Each Gaussian random source generates a zero mean random variable. In this 

simulation model, the variance of each Gaussian source is equal and is set to a value such 

that the variance of the complex sum of these Gaussian random sources is one. Using 

Equation (2.52), the channel response from transmit antenna l  to receive antenna j  is 

represented as 

 
   

ljjlj ljh h e

X jY

θ=

= +
 (4.63) 

 where X  and Y  are IID Gaussian random variables with zero mean and equal variance. 

The variance of the complex sum can be given as  

 

{ } { }( )
( ) ( ){ }
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2 *
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2 2

2 2
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lj lj lj

h

X Y

E h h E h

E X jY X jY

E X Y

σ

σ σ

= −

= + +

= +

= +

=

 (4.64) 

Thus the variance of each Gaussian random source was set as  

 2 2 1/2.X Yσ σ= =  (4.65) 

1. Performance Analysis of MISO System with Two Transmit and One 
Receive Antenna 

At the receive antenna, the signal mr  is written as  

 11 1 21 2
m m m mr h x h x n= + + . (4.66) 

where 11h  and 21h  are channel responses from transmit antenna 1  and 2  to the receive 

antenna respectively. These channel responses are assumed independent. After the FFT 

operation, the signal is written as  

 = + +11 1 21 2FFT[ ] FFT[ ].m m m mr h x h x n  (4.67) 

All the channel responses are considered constant for the duration of an OFDM symbol 

for the slow fading channel. Now, Equation (4.67) can be written as  

 11 1 21 2
k k k kR h X h X N= + + . (4.68) 
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Substituting Equation (2.31) ,  (4.16) and (4.20) into Equation (4.68) yields  

 
11 1 21 1

11 21 1( )

k

k

j
k k k k

j
k k k

R h X h X e N

R h h e X N

φ

φ

−

−

= + +

= + +
 (4.69) 

where kN  is AWGN in the frequency domain and 11 21( )kjh h e φ−+  is the effective channel 

response for the MDDM in the multipath channel.  In Equation (4.69) 21h  is a random 

variable with Rayleigh distributed amplitude and phase uniformly distributed on ( ]π π− , . 

Thus, multiplying 21h  by kje φ−  does not change the statistics of the random variable and 

their product is represented as 21'h . Now, the effective channel response can be written as  

 1 11 21'H h h= +  (4.70) 

Using the MRC receiver as shown in Figure 14, Equation (4.69) is multiplied by 

the complex conjugate of the effective channel response and the and random variable kZ  

is represented as 

 1 1* 1 1*
k k kZ H H X H N= + . (4.71) 

Now, Equation (4.71) can be written as  

 ( ) ( ) ( )
( ) ( )

21 1 1*

* *11 21' 11 21' 1 11 21'

2 *211 21' 11 21' 11 21' 1 11 21'

   

   2( )

k k k

k k

I I Q Q k k

Z H X H N

h h h h X h h N

h h h h h h X h h N

= +

= + + + +

= + + + + +

 (4.72) 

where  lj lj lj
I Qh h jh= + , i.e. lj

Ih  and lj
Qh  are the inphase and quadrature components of the 

respective channel responses.  

For a fixed set of channel responses Equation (4.72) represents a complex 

Gaussian random variable kZ  due to AWGN [16]. To demodulate the BPSK signal, the 

real part of the decision variable kZ , { }ζ = Rek kZ , is compared with a threshold as 

given in Table 3. If correlation demodulator conditions are assumed, then  
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 (4.73) 

The variance of ζ k  is only due to the variance of real part of the noise component  
1*

kH N  [15, 16] and is represented as  
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where { }E represents the expected value. ηk  is the real part of noise component with 

zero mean which can be written as  

 ( )1* 1* 1 *1
Re

2k k k kH N H N H Nη ⎡ ⎤= = +⎣ ⎦  (4.75) 

And  

 

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )

22
2 1* 1* 1 *

2 2 21* 2 1 1 1*

2 22 21* 2 1 1

1
Re

2
1

                         2
4
1

                         2 .
4

k k k k

k k k k

k k k k

H N H N H N

H N H N H H N N

H N H N H N N

η

∗ ∗

∗ ∗

⎛ ⎞⎡ ⎤= = +⎜ ⎟⎣ ⎦ ⎝ ⎠

= + +

= + +

 (4.76) 

 
Substituting Equation (4.74) into Equation (4.75) yields  

 
( ) ( ) ( )( ){ }

( ) ( ){ } ( ) ( ){ } { }( )
ζσ

∗ ∗

∗ ∗

= + +

= + +

2 22 22 1* 2 1 1

2 22 221* 1 1

1
E 2

4
1

    E E 2 E .
4

k k k k k

k k k k

H N H N H N N

H N H N H N N
 (4.77) 

kN  is a complex Gaussian random variable with zero mean, therefore  

 ( ){ } ( ){ }22
0k kE N E N ∗= = . (4.78) 

Substituting Equation (4.78) into Equation (4.77) yields  
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{ }

( ) { }

ζσ
∗

∗

=

= + + +

22 1

2211 21' 11 21' 11 21'

2
E

4
1

    2( ) E .
2

k k k

I I Q Q k k

H N N

h h h h h h N N
 (4.79) 

Now, Equation (4.79) can be written as   

 
( )

( )

ζ

ζ

σ

σ

⎡ ⎤= + + +⎣ ⎦

⎡ ⎤= + + +⎣ ⎦
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2

2 2

2 .
4

k

k

o
I I Q Q

b

o
I I Q Q

b

N
h h h h h h

T

N
h h h h h h

T

 (4.80) 

Now, the conditional bit error probability can be represented as  

 

{ }

( )
( )

ζ ζ

ζ ζ

ζ

ζ

ζ ζ ζ
σ σ
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+ +
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k
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P
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h h h h h h A
Q
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⎞
⎟
⎟
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222 11 21' 11 21' 11 21'2 2( )
   

b I I Q Q

o

AT h h h h h h
Q

N
 (4.81) 

or  

 ' 1
1

2
( ) b
b

o

E
P Q

N
ββ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.82) 

where 1β  is given as  

 ( )β = + + +
2211 21' 11 21' 11 21'

1 2 .I I Q Qh h h h h h  (4.83) 

Equation (4.82) depicts the bit error probability of a MDDM MISO system conditioned 

on the random variable 1β . The performance of an MDDM MISO system over a 
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frequency nonselective, slowly fading Rayleigh channel with MRC can be obtained by 

taking the average of the conditional bit error probability over all possible values of the 

random variable 1β . Now, the unconditional bit error probability can be given as  

 
( )

( ) ( )

β β β

β β β

∞

Β

∞

Β

=

=

∫

∫

1

1

1 1 1
0

1 1 1
0

( )

   2 /

b b

b o

P P f d

Q E N f d
 (4.84) 

where ( )
1 1f βΒ  is the probability density function for 1β . 

The random variable 1β  as defined in Equation (4.83) is a sum of two central chi 

squared random variables of degree two, 
211h  and 

221'h , and two products of Gaussian 

random variables, 11 21'2 I Ih h and 11 21'2 Q Qh h . These central chi squared random variables and 

Gaussian random variables are also correlated. The probability density function of the 

random variable 1β  and integral of Equation (4.84) were computed numerically.  

The random variable 1β  was generated in Matlab by taking one million samples 

each of channel response 11h  and 21'h . The effective channel response was multiplied by 

its complex conjugate. The distribution of 1β  over its range was obtained by evaluating a 

histogram of 500 equally spaced bins with the help of the Matlab function hist . The 

distribution of the data was interpolated by cubic spline data interpolation with the help 

of the Matlab function spline . After data interpolation, this data distribution curve was 

normalized to make the total area under the distribution curve equal to one. Then, the 

probability over all possible values was interpolated by using the Matlab function spline . 

At the end, the average probability of bit error was computed numerically over all the 

possible values of the random variable 1β . The Matlab code is presented in Appendix B. 

[21] 

The simulated and the numerically computed theoretical results of a MISO system 

over frequency nonselective slowly fading Rayleigh channel are shown in Figure 21. For 

the comparison of the performances, the theoretical bit error rate (BER) of the BPSK 

SISO system as obtained in Equation (2.127) is also plotted along with the bit error 

probability obtained from the simulation. The simulated results are close to the 
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theoretical results for lower values of /b oE N  and for higher values of /b oE N  the 

theoretical results are more optimistic. This may be due to the use of the Matlab function 

spline  to interpolate the probability distribution function of the random variable 1β . 

Further analysis could be carried out to determine the causes of this deviation. It was not 

investigated further in this work. Figure 21 clearly shows that the performance of the 

MDDM MISO system is better than the SISO system.  

 
Figure 21 Results of MDDM MISO System in Slow Rayleigh Fading Channel 

 
2. Performance Analysis of MIMO System with Two Transmit and Two 

Receive Antennas 
In this section, the performance analysis of a MIMO system with two transmit and 

two receive antennas is presented. The simulation model and analysis are mainly based 

on the previous section. At each of the receive antennas, the received signals are given by   

 
1 11 1 21 2 1

2 12 1 22 2 2 .

m m m m

m m m m

r h x h x n

r h x h x n

= + +

= + +
 (4.85) 
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where ljh  represents channel response from transmit antenna l  to receive antenna j  and 
j
mr  is the received signal at receive antenna j . It is considered that all the channel 

responses are independent and the reception of the signals at both the antennas is 

uncorrelated. After the FFT operation the signals are represented as  

 
⎡ ⎤ = ⎡ + + ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ = ⎡ + + ⎤⎣ ⎦ ⎣ ⎦

1 11 1 21 2 1

2 12 1 22 2 2

FFT FFT

FFT FFT .

m m m m

m m m m

r h x h x n

r h x h x n
 (4.86) 

All the channel responses are considered constant for the duration of an OFDM symbol. 

Now, Equation (4.86) can be written as  

 
1 11 1 21 2 1

2 12 1 22 2 2.

k k k k

k k k k

R h X h X N

R h X h X N

= + +

= + +
 (4.87) 

Substituting Equations (2.31) ,  (4.16) and (4.20) into Equations (4.87) yields  

 

1 11 1 21 1 1

2 12 1 22 1 2

1 11 21 1 1

2 12 22 1 2

( )

( )

k

k

k

k

j
k k k k

j
k k k k

j
k k k

j
k k k

R h X h X e N

R h X h X e N

R h h e X N

R h h e X N

φ

φ

φ

φ

−

−

−

−

= + +

= + +

= + +

= + +

 (4.88) 

where j
kN  is AWGN in the frequency domain at receive antenna j , ( )φ−+11 21 kjh h e  is the 

effective channel response at receive antenna 1  and ( )φ−+12 22 kjh h e  is the effective 

channel response at receive antenna 2 . In Equation (4.88), all ( ) 1, 2 and 1, 2ljh l j= =  

are random variables with Rayleigh distributed amplitude and phase uniformly 

distributed on ( ]π π− , . Thus, multiplying 21h  and 22h  by kje φ−  does not change the 

statistics of both the random variables and their respective products are represented as 
21' 21 kjh h e φ−=  and φ−=22' 22 kjh h e . Now, the effective channel responses are written as   

 
1 11 21'

2 12 22'.

H h h

H h h

= +

= +
 (4.89) 
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Using the MRC receiver as shown in Figure 14, Equation (4.88) is multiplied by 

the complex conjugate of the effective channel response and the random variables for 

respective diversity receptions are given by 

 

1 1 1* 1 1* 1

2 2 2* 1 2* 2

21 1 1 1* 1

22 2 1 2* 2.

k k k

k k k

k k k

k k k

Z H H X H N

Z H H X H N

Z H X H N

Z H X H N

= +

= +

= +

= +

 (4.90) 

Now Equations (4.90) can be expressed as  

 
( ) ( )

( ) ( )

2 *21 11 21' 11 21' 11 21' 1 11 21' 1

2 *22 12 22' 12 22' 12 22' 1 12 22' 2

2( )

2( )

k I I Q Q k k

k I I Q Q k k

Z h h h h h h X h h N

Z h h h h h h X h h N

= + + + + +

= + + + + +
 (4.91) 

where  { }Relj lj
Ih h=  and { }Imlj lj

Qh h=  are the inphase and quadrature components of 
the respective channel responses.  

After combining both the space diversity receptions in the MRC receiver the 

decision variable kZ  is given as  

 

( )

1 2

2 21 1 2 1 1* 1 2* 2

2 21 2 1 1* 1 2* 2

   

   .

k k k

k k k k

k k k

Z Z Z

H X H X H N H N

H H X H N H N

= +

= + + +

= + + +

 (4.92) 

For a fixed set of channel responses Equation (4.92) represents a complex 

Gaussian random variable kZ  due to AWGN [16]. To demodulate the BPSK signal, the 

real part of the decision variable kZ , { }Rek kZζ = , is compared with a threshold as given 

in Table 3. If correlation demodulator conditions are assumed, then  
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(4.93) 

where  

 
( )

( )

2 22 211 21' 12 22' 11 21' 11 21'
2

12 22' 12 22'

2

      2 .

I I Q Q

I I Q Q

h h h h h h h h

h h h h

β = + + + + + +

+
 (4.94) 

 The variance of ζ k  is only due to the variance of real part of the noise components  
1* 1

kH N  and  2* 2
kH N  [15, 16]. Noise components at both the receive antennas 1

kN  and 2
kN  

are IID complex Gaussian random variables. Thus, the variance of their sum is the sum of 
their individual variances and is given as  

 ζ ζ ζσ σ σ= +1 2
2 2 2 .
k k k

 (4.95) 

Following the results derived in the previous section from Equation (4.74) to (4.80),  ζσ
2

k
 

can be expressed as  

 

{ } { }
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⎡ ⎤+ + + +
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E E
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    .

4        2

k k k k k

I I Q Q

b I I Q Q

H N N H N N

h h h h h hN
T h h h h h h

 (4.96) 

Substituting Equation (4.94) into Equation (4.96) yeilds 
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ζ

βσ

βσ

=

=

2 0 2

0 2

4

.
4

k

k

b

b

N
T

N
T

 (4.97) 

Now, substituting Equation (4.93) and (4.97) into Equation (4.3), the conditional bit error 

probability is represented as  
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⎝ ⎠
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 (4.98) 

Equation (4.98) represents the bit error probability of an MDDM MIMO system  

with two transmit antennas and two receive antennas conditioned on a random variable 

2β . The performance of the MDDM MIMO system over a frequency nonselective slowly 

fading Rayleigh channel with MRC can be obtained by taking the average of the 

conditional bit error probability over all possible values of random variable 2β . Now the 

unconditional bit error probability can be given as  

 
( )

( ) ( )

β β β

β β β

∞

Β

∞

Β

=

=

∫

∫

2

2

2 2 2
0

2 2 2
0
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   2 /

b b

b o

P P f d

Q E N f d
 (4.99) 

where ( )
2 2f βΒ  is the probability density function for 2β . 

The random variable 2β  as defined in Equation (4.94) is a sum of central chi 

squared random variables of degree two and products of Gaussian random variables. The 

central chi squared random variables and Gaussian random variables are also correlated. 

The probability density function of the random variable 2β  and integral of Equation 

(4.99) were computed numerically, using the same algorithm as discussed in previous 

section. 

The simulated and the numerically computed theoretical results of the MIMO 

system with two transmit antennas and two receive antennas over a frequency 

nonselective slowly fading Rayleigh channel are shown in Figure 22. For the comparison 

of the performances, this figure also includes the theoretical and the simulated bit error 

probability of a BPSK SISO system. The simulation results, for low /b oE N  values, 

deviate slightly from the theoretical results. The theoretical results are more optimistic for 

low /b oE N . The reason for this slight deviation may be the same as discussed in the 

previous section, however, this was not investigated in this work. 
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Figure 22 Results of MDDM MIMO System in Slow Rayleigh Fading Channel 

 
3. Performance Analysis of MIMO System with Two Transmit and 

Three Receive Antennas 
In this section the performance analysis of a MIMO system with two transmit and 

three receive antennas is presented. The scheme for building the simulation model and 

the analysis is the same as discussed in last two sections. At the receive antennas, the 

received signals are given by   

 

1 11 1 21 2 1

2 12 1 22 2 2

3 13 1 23 2 3 .

m m m m

m m m m

m m m m

r h x h x n

r h x h x n

r h x h x n

= + +

= + +

= + +

 (4.100) 

After the FFT operation the signals are written as  
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r h x h x n

r h x h x n

 (4.101) 

All the channel responses are considered fixed for the duration of an OFDM symbol. 

Now, Equation (4.101) can be written as  

 

1 11 1 21 2 1

2 12 1 22 2 2
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k k k k

k k k k
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R h X h X N

R h X h X N

= + +

= + +

= + +

 (4.102) 

Substituting Equations (2.31),  (4.16) and (4.20) into Equations (4.102) yields  
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 (4.103) 

where kN  is AWGN in the frequency domain. 11 21( )kjh h e φ−+ , 21 22( )kjh h e φ−+  and 
13 23( )kjh h e φ−+  are the effective channel responses at receive antennas 1 , 2  and 3  

respectively. In Equation (4.103), all ( ) 1, 2 and 1, 2, 3ljh l j= =  are random variables 

with Rayleigh distributed amplitude and phase uniformly distributed in ( ]π π− , . Thus, 

multiplying 21h , 22h  and 23h  by kje φ−  does not change the statistics of these random 

variables and their respective products are represented as 21' 21 kjh h e φ−= , 22' 22 kjh h e φ−=  

and 23' 23 kjh h e φ−= . Now, the effective channel responses are given as   

 

1 11 21'

2 12 22'

3 13 23'.

H h h

H h h

H h h

= +

= +

= +

 (4.104) 
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Using MRC receiver as shown in Figure 14, Equation (4.88) is multiplied by the 

complex conjugate of the effective channel response and the random variable j
kZ  at 

respective diversity receptions are written as 

 

= +

= +

= +

= +

= +

= +

1 1 1* 1 1* 1

2 2 2* 1 2* 2

3 3 3* 1 3* 3

21 1 1 1* 1
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k k k

k k k

k k k

Z H H X H N

Z H H X H N

Z H H X H N

Z H X H N

Z H X H N

Z H X H N

 (4.105) 

Now, Equations (4.105) can be represented as  
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k I I Q Q k k

k I I Q Q k k

Z h h h h h h X h h N

Z h h h h h h X h h N

Z h h h h h h X h h N

 (4.106) 

where  { }Relj lj
Ih h=  and { }Imlj lj

Qh h=  are the inphase and quadrature components of 
the respective channel responses.  

After combining all the space diversity receptions in the MRC receiver the 

decision variable kZ  is given as  

 

( )

1 2 3

2 2 21 1 2 1 3 1 1* 1 2* 2 3* 3
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 (4.107) 

For a fixed set of channel responses Equation (4.107) represents a complex 

Gaussian random variable kZ  due to AWGN [16]. To demodulate the BPSK signal, the 

real part of the decision variable kZ , { }ζ = Rek kZ , is compared with a threshold as 

given in Table 3. If correlation demodulator conditions are assumed, then  
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where  
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 (4.109) 

 The variance of ζ k  is only due to the variance of real part of the noise components  
1* 1

kH N , 2* 2
kH N  and 3* 3

kH N   [15, 16]. Noise components at all the receiving antennas 
1
kN , 2

kN  and 3
kN  are IID complex Gaussian random variables. Thus, the variance of their 

sum is the sum of their individual variances and is represented as  

 ζ ζ ζ ζσ σ σ σ= + +1 2 3
2 2 2 2 .
k k k k

 (4.110) 

Following the results derived in previous section from Equation (4.74) to (4.80),  2
kζ

σ  can 

be written as  
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(4.111) 

Substituting Equation (4.109) into Equation (4.111) yields 
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Now, substituting Equation (4.108) and (4.112) into Equation (4.3), the conditional bit 

error probability is written as  
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 (4.113) 

Equation (4.113) shows the bit error probability of the MDDM MIMO system 

with two transmit antennas and three receive antennas conditioned on the random 

variable 3β . The performance of the MDDM MIMO system over a frequency 

nonselective, slowly fading Rayleigh channel with MRC can be obtained by taking the 

average of the conditional bit error probability over all possible values of random 

variable 3β  . Now, unconditional bit error probability can be represented as  
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where ( )
3 3f βΒ  is the probability density function for 3β . 

The random variable 3β  as defined in Equation (4.109) is also a sum of central 

chi squared random variables of degree two and products of Gaussian random variables. 

The central chi squared random variables and the Gaussian random variables are also 

correlated. The probability density function of the random variable 3β  and integral of 

Equation (4.99) were computed numerically, using the same algorithm as discussed in 

previous section.  

The simulated and the numerically computed theoretical results of the MIMO 

system (with 2 transmit antennas and 3 receive antennas) over a frequency nonselective 

slowly fading Rayleigh channel are shown in Figure 23. For comparison of the 

performances, this figure also includes the theoretical and the simulated bit error 

probability for a BPSK SISO system. This figure shows that for low /b oE N  values the 

theoretical results are more optimistic and for high /b oE N  values, the simulation results 
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are more optimistic. This deviation of simulation results from the theoretical results may 

also be due to the reasons as discussed in previous sections. Further analysis can be 

carried out to investigate the exact causes of this trend as a future work; this was not 

investigated further in this work.   

 

 
Figure 23  Results of MDDM MIMO System in Slow Rayleigh Fading Channel 

 
E. SUMMARY  

In this chapter, the MDDM MISO and MIMO systems as discussed in Chapter III 

were examined with the AWGN channel with and without slow Rayleigh fading. These 

systems were simulated in Matlab and the theoretical results were shown in comparison 

with the simulated results. The simulated results follow the theoretical results closely. In 

the next chapter the results of the thesis are summarized and areas for follow on work are 

presented. 
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V. CONCLUSION 

The goal of this thesis was to design and analyze a MIMO system with 

multicarrier delay diversity modulation. MDDM was incorporated with orthogonal 

frequency division multiplexing and cyclic delay diversity. A MISO system and MIMO 

systems were designed using the MDDM. They were simulated in Matlab with BPSK and 

were tested in a progressive manner, first in an AWGN channel and then in a multipath 

fading channel with AWGN. The BER performance of these systems was analyzed and 

compared with the performance of the simulated systems. The simulated performance 

results and theoretical analysis results were compared with the conventional SISO system 

performance. 

A. RESULTS 
The simulated MDDM MISO and MIMO systems achieved BER performance 

results consistent with the theoretical analysis in an AWGN channel with and without 

multipath fading. The performance metric of bit error probability versus 0/bE N  (energy 

per bit to noise power spectral density ratio) was used. To establish a fair comparison, the 

transmitted power and data rate for SISO, MISO and MIMO systems were equal. The 

comparison of performances in AWGN showed that the MDDM MISO system 

performed better than the SISO system for low /b oE N  with up to a 6.5  dB performance 

gain and performed worse for higher /b oE N  values. The performances of the MDDM 

MIMO systems were better than that of SISO system for all values of /b oE N . MIMO 

systems with two receive antennas and three receive antennas, outperformed a SISO 

system by 1.7  dB and 3.4  dB performance gain. In a multipath fading channel with 

AWGN, MISO and MIMO systems were able to achieve significant advantage over a 

SISO system. The improvement in performances of the MDDM MISO and MIMO 

systems over the SISO system can be exploited for military and civilian applications. 

B. RECOMMENDATION FOR FUTURE RESEARCH 
There are four areas identified for future research.  First, the MDDM MIMO 

system performance can be analyzed in different fading conditions as described by 

another fading model in place of the slow frequency nonselective Rayleigh fading  
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channel.  Good choices for alternate fading models include slow Ricean frequency 

nonselective fading, slow Nakagami frequency nonselective fading, and various forms of 

frequency selective fading. 

In addition to the analysis performed in this thesis, higher order modulation 

schemes in lieu of BPSK, i.e., M PSK and M QAM, can be incorporated and analyzed to 

evaluate the performance of the MDDM MIMO systems. 

Next, forward error correction (FEC) coding with interleaving can be 

incorporated into the MDDM MIMO system with a maximum likelihood sequence 

estimation receiver. The performance can be analyzed theoretically and compared with 

simulated performance. 

Lastly, the MIMO system analysis herein assumes perfect CSI at the receiver.  If 

this information about the channel can be extracted at the receiver, then it can be sent to 

the transmitter.  The transmitter can use CSI to more efficiently transmit power to the 

receiver through channels that are less faded than others.  Techniques that control the 

transmitter can be investigated and performance of the system analyzed.   
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APPENDIX  MATLAB CODES 

This appendix includes the Matlab code for simulating the MDDM scheme in an 

AWGN channel with and without frequency nonselective Rayleigh fading. This also 

includes the theoretically computed results for the BER performance of the MDDM.  

A. SIMULATION OF THE MDDM IN AN AWGN CHANNEL 
 %******** MDDM Simulation with AWGN only ********* 
clear all 
num_frame = 100000; 
fftsize = 256;                                   % Number of subcarriers 
data_size = 192;                             % Data symbol in an OFDM frame 
t_data = data_size*num_frame;     % Total number of data for the simulation 
hfc = 27;                                         % high frequency carriers 
lfc = 28;                                           % low frequency carriers 
pilot=ones(1,8);                               % All pilot sybmols set to ones  
dc_comp = 0;                                  % DC component not transmitted 
 for n=1:fftsize 
p_shift(n,1)=exp(i*2*pi*(n-1)/fftsize);  % Phase shift due to cyclic delay 
 end                                                     % afer fft operation 
 EbNo_dB=0:12; 
for nn=1:length(EbNo_dB) 
    SNR=EbNo_dB(nn)+ 3;   % converting SNR to EbNo 
t_err_SISO=0; t_err_2T1R=0;  t_err_2T2R=0;  t_err_2T3R=0; 
BER=0;  totalerr=0; 
%********** Simulating input data and BPSK modulation ************* 
 for mm =1:num_frame 
r = rand(1,data_size); 
for m=1:data_size 
    if r(1,m)< 0.5 
        info(1,m)=0;  symbol(1,m)=1; 
    else 
        info(1,m)=1;  symbol(1,m)=-1; 
    end 
end 
%******************** Creating OFDM Block ************ 
Pre_IFFT_blk=[ dc_comp   pilot symbol(1:92)  zeros(1,(hfc+lfc))   symbol(93:data_size)]; 
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%************* Simulating Trnasmitted signal************* 
 txsig1 = ifft((Pre_IFFT_blk).');   % taking IFFT after S/P coversion 
txsig2 = circshift(txsig1,1);       % adding Cyclic Delay Diversity  
Tx_signal = 1/sqrt(2)*(txsig1+txsig2); 
%********* Simulating Receivs ********* 
Rx_sig = awgn(symbol,SNR,'measured');  % Received signal for SISO BPSK 
Rx_sig_1 = awgn(Tx_signal,SNR,'measured');  % Received signal by Ant. 1 
Rx_sig_2 = awgn(Tx_signal,SNR,'measured');  % Received signal by Ant. 2 
Rx_sig_3 = awgn(Tx_signal,SNR,'measured');  % Received signal by Ant. 3 
Rx_2T1R = fft(Rx_sig_1);                   % 2 Tx 1 Rx Antennas 
Rx_2T2R = fft(Rx_sig_1+Rx_sig_2);          % 2 Tx 2 Rx Antennas 
Rx_2T3R = fft(Rx_sig_1+Rx_sig_2+Rx_sig_3); % 2 Tx 3 Rx Antennas 
Rx_data_2T1R =(Rx_2T1R.*(1+p_shift)); 
Rx_data_2T2R =(Rx_2T2R.*(1+p_shift)); 
Rx_data_2T3R =(Rx_2T3R.*(1+p_shift)); 
 Rx_data_2T1R =(Rx_data_2T1R).';           % converting P/S 
Rx_data_2T2R =(Rx_data_2T2R).'; 
Rx_data_2T3R =(Rx_data_2T3R).'; 
% Extracing received data from ofdm block 
Rx_info_2T1R = [Rx_data_2T1R(10:101) Rx_data_2T1R(157:fftsize)];  
Rx_info_2T2R = [Rx_data_2T2R(10:101) Rx_data_2T2R(157:fftsize)]; 
Rx_info_2T3R = [Rx_data_2T3R(10:101) Rx_data_2T3R(157:fftsize)]; 
%******************* Demodulating BPSK signal ****************** 
for k=1:data_size 
    if real(Rx_sig(1,k)) > 0              % demodulating SISO info 
        R_info(1,k)=0; 
    else R_info(1,k)=1; 
    end 
    if real(Rx_info_2T1R(1,k)) > 0       % demodulating 2T1R info 
        R_info_2T1R(1,k)=0; 
    else R_info_2T1R(1,k)=1; 
    end 
    if real(Rx_info_2T2R(1,k)) > 0       % demodulating 2T2R info 
        R_info_2T2R(1,k)=0; 
    else R_info_2T2R(1,k)=1; 
    end 
    if real(Rx_info_2T3R(1,k)) > 0       % demodulating 2T3R info 
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        R_info_2T3R(1,k)=0; 
    else R_info_2T3R(1,k)=1; 
    end 
end 
%************ Probability of bit error Pb ************* 
err_SISO = length(find(info-R_info));       % calculating errors 
err_2T1R = length(find(info-R_info_2T1R)); 
err_2T2R = length(find(info-R_info_2T2R)); 
err_2T3R = length(find(info-R_info_2T3R)); 
t_err_SISO = t_err_SISO+err_SISO;   % Calculating total errors 
t_err_2T1R = t_err_2T1R+err_2T1R; 
t_err_2T2R = t_err_2T2R+err_2T2R; 
t_err_2T3R = t_err_2T3R+err_2T3R; 
end 
Pb_SISO(nn) = t_err_SISO/t_data;   %calculating BER 
Pb_2T1R(nn) = t_err_2T1R/t_data; 
Pb_2T2R(nn) = t_err_2T2R/t_data; 
Pb_2T3R(nn) = t_err_2T3R/t_data; 
end 
save MDDM_AWGN_R   EbNo_dB   Pb_SISO   Pb_2T1R   Pb_2T2R   Pb_2T3R 
load Theo_AWGN_R 
figure 
semilogy(EbNo_dB,Pb_SISO_T,'k',EbNo_dB, Pb_2T1R_T,'r',EbNo_dB, Pb_2T2R_T,... 
    'b',EbNo_dB, Pb_2T3R_T,'g',EbNo_dB,Pb_SISO,'ko', EbNo_dB,Pb_2T1R,'rv',... 
    EbNo_dB,Pb_2T2R,'b*',EbNo_dB,Pb_2T3R,'gd') 
grid on 
xlabel('E_b/N_o in dB') 
ylabel('P_b') 
legend('SISO_T','2T1R_T','2T2R_T','2T3R_T',... 
    'SISO_S','2T1R_S','2T2R_S','2T3R_S') 
title('Comparison of Theoretical and Simulated Resulsts') 
B. COMPUTING THEORETICAL BER OF THE MDDM IN AN AWGN 

CHANNEL 
 %******* Theoratical BER in AWGN Channel ******** 
clear all 
phase = linspace(0,2*pi*255/256,256); 
 phi = [phase(10:101)  phase(157:256)]'; 
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 comp = (1+cos(phi)); 
EbNo_dB=0:12; 
EbNo=10.^(EbNo_dB/10); 
for n = 1:length(EbNo) 
    temp = EbNo(n); 
     for k=1:length(phi) 
     Q2T1R(k,n) = 0.5*erfc(sqrt(2*temp*comp(k))); 
     Q2T2R(k,n) = 0.5*erfc(sqrt(4*temp*comp(k))); 
     Q2T3R(k,n) = 0.5*erfc(sqrt(6*temp*comp(k))); 
      end 
 end 
%***** Theoratical BPSK ****** 
Pb_SISO_T=0.5*erfc(sqrt(EbNo)); 
Pb_2T1R_T = 1/length(phi)*sum(Q2T1R); 
Pb_2T2R_T = 1/length(phi)*sum(Q2T2R); 
Pb_2T3R_T = 1/length(phi)*sum(Q2T3R); 
save Theo_AWGN_R    EbNo_dB Pb_SISO_T  Pb_2T1R_T  Pb_2T2R_T  Pb_2T3R_T 
load MDDM_AWGN_R 
figure 
semilogy(EbNo_dB,Pb_SISO_T,'k',EbNo_dB, Pb_2T1R_T,'r',EbNo_dB,... 
Pb_2T2R_T,'b',EbNo_dB, Pb_2T3R_T,'g',EbNo_dB,Pb_SISO,'ko',...  
EbNo_dB,Pb_2T1R,'rv',  EbNo_dB,Pb_2T2R,'b*',EbNo_dB,Pb_2T3R,'gd') 
grid on 
xlabel('E_b/N_o in dB') 
ylabel('P_b') 
legend('SISO_T','2T1R_T','2T2R_T','2T3R_T','SISO_S','2T1R_S','2T2R_S','2T3R_S') 
title('Copmarison of Theoretical and Simulated Resulsts') 

C. SIMULATION OF THE MDDM IN FREQUENCY NONSELECTIVE 
SLOW FADING RAYLEIGH CHANNEL 

 %* Simulation of MDDM MISO and MIMO Systems in Frequency Nonselective Slow  

% Fading Rayleigh Channel  
%  RAYLEIGH FADING CHANNEL 
clear all 
num_frame=100000; 
fftsize=256;                    % Number of subcarriers 
data_size=192;                  % Data symbol in one frame 
t_data = data_size*num_frame;   % Total number of data for the simulation 
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hfc = 27;                       % high frequency carriers 
lfc = 28;                       % low frequency carriers 
pilot=ones(1,8);                % All pilot sybmols set to ones  
dc_comp = 0;                    % DC component not transmitted 
for n=1:fftsize 
p_shift(n,1)=exp(-i*2*pi*(n-1)/fftsize); % Phase shift due to cyclic delay 
end                                      % afer fft operation 
EbNo_dB=0:10; 
for nn=1:length(EbNo_dB) 
    SNR=EbNo_dB(nn)+3; 
t_err_SISO_F=0;    t_err_2T1R_F=0;     t_err_2T2R_F=0;     t_err_2T3R_F=0; 
BER=0;     totalerr=0; 
%********* Simulating input data and BPSK modulation ********* 
for mm =1:num_frame 
r=rand(1,data_size); 
for m=1:data_size 
    if r(1,m)< 0.5 
        info(1,m)=0;    symbol(1,m)=1; 
    else 
        info(1,m)=1;    symbol(1,m)=-1; 
    end 
end 
%******************** Creating OFDM Block ************ 
 Pre_IFFT_blk=[ dc_comp   pilot symbol(1:92)  zeros(1,(hfc+lfc))... 
    symbol(93:data_size)]; 
%************* Simulating Trnasmit signal************* 
 txsig1= 1/sqrt(2)*ifft((Pre_IFFT_blk).');  % taking IFFT after S/P coversion 
txsig2=circshift(txsig1,1); 
%********* Simulating Received signal%%%%%%%%%%%%%%% 
% Frequency Responses of Channels  
h=1/sqrt(2)*(randn(1,data_size)+j*randn(1,data_size));    % SISO system channel 
h_11=1/sqrt(2)*(randn(1)+j*randn(1)); % Tx Ant. 1 to Rx Ant. 1 
h_21=1/sqrt(2)*(randn(1)+j*randn(1)); %Freq. Response of Chan. T.A.2 to R.A.1 
h_12=1/sqrt(2)*(randn(1)+j*randn(1)); %Freq. Response of Chan. T.A.1 to R.A.2 
h_22=1/sqrt(2)*(randn(1)+j*randn(1)); %Freq. Response of Chan. T.A.2 to R.A.2 
h_13=1/sqrt(2)*(randn(1)+j*randn(1)); %Freq. Response of Chan. T.A.1 to R.A.3 
h_23=1/sqrt(2)*(randn(1)+j*randn(1)); %Freq. Response of Chan. T.A.2 to R.A.3 
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H_1=h_11+h_21*p_shift;  % Composite channel response at R.A. 1 
H_2=h_12+h_22*p_shift;  % Composite channel response at R.A. 2 
H_3=h_13+h_23*p_shift;  % Composite channel response at R.A. 3 
%******** Simulating Recevers ******* 
Rx_sig = awgn(symbol.*h,SNR,'measured');  % Received signal for SISO BPSK 
Rx_sig_1=awgn((txsig1*h_11+txsig2*h_21),SNR,'measured');   
% simulating Ant.# 1 received signal with rayleigh flat fading channel 
Rx_sig_2=awgn((txsig1*h_12+txsig2*h_22),SNR,'measured'); 
% simulating Ant.# 2 received signal with rayleigh flat fading channel 
Rx_sig_3=awgn((txsig1*h_13+txsig2*h_23),SNR,'measured'); 
% simulating Ant.# 2 received signal with rayleigh flat fading channel 
fft_sig_1=fft(Rx_sig_1); 
fft_sig_2=fft(Rx_sig_2); 
fft_sig_3=fft(Rx_sig_3); 
%Simulating MRC Receiver 
Vk_SISO=Rx_sig.*conj(h);    %SISO system reception with CSI 
Vk_1=fft_sig_1.*conj(H_1);  %Antenna 1 diversity reception 
Vk_2=fft_sig_2.*conj(H_2);  %Antenna 2 diversity reception 
Vk_3=fft_sig_3.*conj(H_3);  %Antenna 3 diversity reception 
% Combining all space diversity receptions 
Zk_2T1R=real((Vk_1).');           %Decision variable of MISO (2T1R) and P/S conversion 
Zk_2T2R=real((Vk_1+Vk_2).');      %Decision variable of MIMO (2T2R) and P/S conversion 
Zk_2T3R=real((Vk_1+Vk_2+Vk_3).'); %Decision variable of MIMO (2T3R) and P/S conversion 
% Extracing real part of decision variable from ofdm block 
Rx_info_2T1R_F = [Zk_2T1R(10:101) Zk_2T1R(157:fftsize)];  
Rx_info_2T2R_F = [Zk_2T2R(10:101) Zk_2T2R(157:fftsize)]; 
Rx_info_2T3R_F = [Zk_2T3R(10:101) Zk_2T3R(157:fftsize)]; 
Rx_info_SISO_F=real(Vk_SISO);            %BPSK SISO System received data 
%******************* Demodulating BPSK signal ****************** 
for k=1:data_size 
    if Rx_info_SISO_F(1,k) > 0              % demodulating SISO info 
        R_info_SISO_F(1,k)=0; 
    else R_info_SISO_F(1,k)=1; 
    end 
    if Rx_info_2T1R_F(1,k) > 0       % demodulating 2T1R info 
        R_info_2T1R_F(1,k)=0; 
    else R_info_2T1R_F(1,k)=1; 
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    end 
    if Rx_info_2T2R_F(1,k) > 0       % demodulating 2T2R info 
        R_info_2T2R_F(1,k)=0; 
    else R_info_2T2R_F(1,k)=1; 
    end 
      if Rx_info_2T3R_F(1,k) > 0       % demodulating 2T3R info 
        R_info_2T3R_F(1,k)=0; 
    else R_info_2T3R_F(1,k)=1; 
    end 
end 
%%************ Probability of bit error Pb ************* 
err_SISO_F = length(find(info-R_info_SISO_F));       % calculating errors 
err_2T1R_F = length(find(info-R_info_2T1R_F)); 
err_2T2R_F = length(find(info-R_info_2T2R_F)); 
err_2T3R_F = length(find(info-R_info_2T3R_F)); 
t_err_SISO_F = t_err_SISO_F+err_SISO_F;   % Calculating total errors 
t_err_2T1R_F = t_err_2T1R_F+err_2T1R_F; 
t_err_2T2R_F = t_err_2T2R_F+err_2T2R_F; 
t_err_2T3R_F = t_err_2T3R_F+err_2T3R_F; 
end 
 Pb_SISO_F(nn) = t_err_SISO_F/t_data;   %calculating BER 
Pb_2T1R_F(nn) = t_err_2T1R_F/t_data; 
Pb_2T2R_F(nn) = t_err_2T2R_F/t_data; 
Pb_2T3R_F(nn) = t_err_2T3R_F/t_data; 
end 
save MDDM_SRF_R    EbNo_dB   Pb_SISO_F   Pb_2T1R_F   Pb_2T2R_F   Pb_2T3R_F 
load Theo_SRF_R 
figure 
semilogy(EbNo_dB,Pb_SISO_F_T,'k',EbNo_dB, Pb_2T1R_F_T,'r',EbNo_dB,... 
    Pb_2T2R_F_T,'b',EbNo_dB, Pb_2T3R_F_T,'g',EbNo_dB,Pb_SISO_F,'ko',... 
    EbNo_dB,Pb_2T1R_F,'rv',  EbNo_dB,Pb_2T2R_F,'b*',EbNo_dB,Pb_2T3R_F,'gd') 
grid on 
xlabel('E_b/N_o in dB') 
ylabel('P_b') 
legend('SISO_T','2T1R_T','2T2R_T','2T3R_T','SISO_S','2T1R_S','2T2R_S','2T3R_S') 
title('Copmarison of Theoretical and Simulated Resulsts') 
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D. COMPUTING THEORETICAL BER OF THE MDDM IN FREQUENCY 
NONSLECECTIVE SLOW FADING RAYLEIGH CHANNEL 

 % Calculating Theoretical Results By Numerical Methods 
global W X N 
EbNo_dB = 0:10; 
EbNo = 10.^(EbNo_dB/10); 
% creating independent channel responses 
h_11=1/sqrt(2)*(randn(1,10^6)+j*randn(1,10^6)); % Tx Ant. 1 to Rx Ant.1 
h_21=1/sqrt(2)*(randn(1,10^6)+j*randn(1,10^6)); % T.A.2 to R.A.1 
h_12=1/sqrt(2)*(randn(1,10^6)+j*randn(1,10^6)); % T.A.1 to R.A.2 
h_22=1/sqrt(2)*(randn(1,10^6)+j*randn(1,10^6)); % T.A.2 to R.A.2 
h_13=1/sqrt(2)*(randn(1,10^6)+j*randn(1,10^6)); % T.A.1 to R.A.3 
h_23=1/sqrt(2)*(randn(1,10^6)+j*randn(1,10^6)); % T.A.2 to R.A.3 
H_1=h_11+h_21; %*p_shift;  % Effective hannel response at R.A. 1 
H_2=h_12+h_22; %*p_shift;  % Effective channel response at R.A. 2 
H_3=h_13+h_23; %*p_shift;  % Effective channel response at R.A. 3 
% creating random variables Beta 
Beta_1=((H_1).*conj(H_1)); 
Beta_2=((H_1).*conj(H_1))+((H_2).*conj(H_2)); 
Beta_3=((H_1).*conj(H_1))+((H_2).*conj(H_2))+((H_3).*conj(H_3)); 
[N1 X1]=hist(Beta_1,500); 
[N2 X2]=hist(Beta_2,500); 
[N3 X3]=hist(Beta_3,500); 
% Theoretical BER foR SISO 
x = sqrt(2*EbNo./(1+2*EbNo)); 
Pb_SISO_F_T = 0.5*(1-x); 
% Estimating PDF Beta_1 and Calculting Theoretical BER for 2T1R  
X=X1;  N=N1; 
W=quad(@Func_Est_Cur,min(X1),max(X1));  % Normalizing factor for PDF 
Pr_Beta_1 = quad(@Func_pdf_Beta,min(X1), max(X1)) 
dBeta_1=(min(X1):0.0001:max(X1)); 
for i=1:length(EbNo) 
  Q_2Beta_1 = 0.5*erfc(sqrt(2*EbNo(i)*dBeta_1)); 
  Pb_2T1R_F_T(i) = sum(Q_2Beta_1.*abs(Func_pdf_Beta(dBeta_1)))*0.0001; 
end 
% Estimating PDF Beta_2 and Calculting Theoretical BER for 2T2R  
X=X2;  N=N2; 
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W=quad(@Func_Est_Cur,min(X2),max(X2));  % Normalizing factor for PDF 
Pr_Beta_2 = quad(@Func_pdf_Beta,min(X2), max(X2)) 
dBeta_2=(0:0.0001:max(X2)); 
for i=1:length(EbNo) 
  Q_2Beta_2 = 0.5*erfc(sqrt(2*EbNo(i)*dBeta_2)); 
  Pb_2T2R_F_T(i) = sum(Q_2Beta_2.*abs(Func_pdf_Beta(dBeta_2)))*0.0001; 
end 
% Estimating PDF Beta_3 and Calculting Theoretical BER for 2T3R  
X=X3;  N=N3; 
W=quad(@Func_Est_Cur,min(X3),max(X3));  % Normalizing factor for PDF 
Pr_Beta_3 = quad(@Func_pdf_Beta,min(X3), max(X3)) 
dBeta_3=(0:0.0001:max(X3)); 
for i=1:length(EbNo) 
  Q_2Beta_3 = 0.5*erfc(sqrt(2*EbNo(i)*dBeta_3)); 
  Pb_2T3R_F_T(i) = sum(Q_2Beta_3.*abs(Func_pdf_Beta(dBeta_3)))*0.0001; 
end 
save Theo_SRF_R    EbNo_dB  Pb_SISO_F_T  Pb_2T1R_F_T  Pb_2T2R_F_T  Pb_2T3R_F_T 
load MDDM_SRF_R 
figure 
semilogy(EbNo_dB,Pb_SISO_F_T,'k',EbNo_dB, Pb_2T1R_F_T,'r',EbNo_dB, ... 
    Pb_2T2R_F_T,'b',EbNo_dB, Pb_2T3R_F_T,'g',EbNo_dB,Pb_SISO_F,'ko',... 
    EbNo_dB,Pb_2T1R_F,'rv',  EbNo_dB,Pb_2T2R_F,'b*',EbNo_dB,Pb_2T3R_F,'gd') 
grid on 
xlabel('E_b/N_o in dB') 
ylabel('P_b') 
legend('SISO_T','2T1R_T','2T2R_T','2T3R_T','SISO_S','2T1R_S','2T2R_S','2T3R_S') 
title('Comparison of Theoretical and Simulated Resulsts') 
E. FUNCTIONS TO INTERPOLATE PROBABAILITY DISTRIBUTION 

FUNCTIONS  
 function y = Func_Est_Cur(x); 
%Title     : Estimation of Data Distribution of Random Variable Beeta 
%Author    : Muhammad Shahid, Naval Post Graduate School, Septermber 2005 
%----------------------------------------------------------------------- 
% y = Func_Est_Cur(x) 
%----------------------------------------------------------------------- 
%Input     : Random variabel Beeta 
%Output    : Estimated Data Distribution of Beeta 
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%----------------------------------------------------------------------- 
global W X N 
y=spline(X,N,x); 

 function PDF = Func_pdf_Beta(b_2); 
%Title     : Interoplation of PDF of Random Variable Beeta 
%Author    : Muhammad Shahid, Naval Post Graduate School, Septermber 2005 
%----------------------------------------------------------------------- 
% PDF = Func_pdf_Beta(b_2); 
%----------------------------------------------------------------------- 
%Input     : Random variabel Beeta 
%Output    : PDF of Beeta 
%----------------------------------------------------------------------- 
global W X N 
PDF=spline(X,N,b_2)/W; 
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